

Designing Light-Frame Wood Structures over Podiums: Seismic Considerations

Jose Machuca, SE | Holmes
Matt Cloninger, PE, SE | WoodWorks

“The Wood Products Council” is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to **AIA CES** for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with **AIA CES** for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

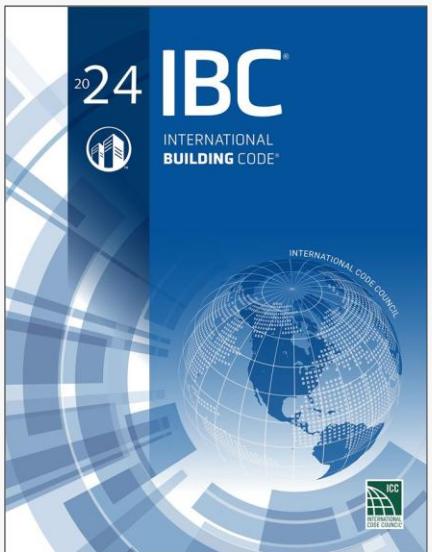
This course highlights seismic design considerations for mid-rise light-frame wood buildings over concrete podiums, a common structural configuration in urban residential development. Through an abbreviated design example, participants will explore the application of the two-stage seismic analysis procedure, development of lateral forces, and the design and deflection calculation of a sample shear wall in a high seismic region, based on ASCE 7-22 and the 2024 IBC. This course highlights critical nuances of code interpretation, common design pitfalls, and real-world considerations to ensure safe and code-compliant design.

This webinar will serve as both a primer and a bridge to more comprehensive guidance. A newly published design example, which complements this presentation, will also be shared with attendees.

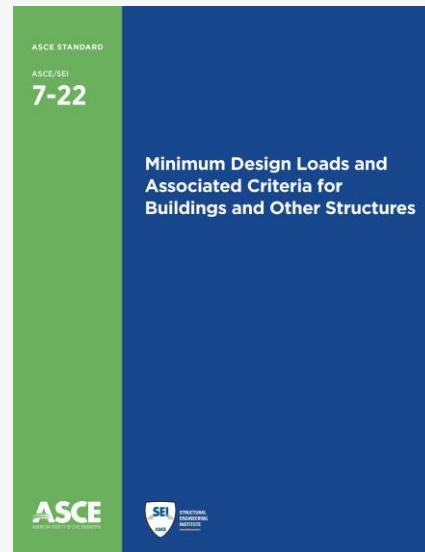
Learning Objectives

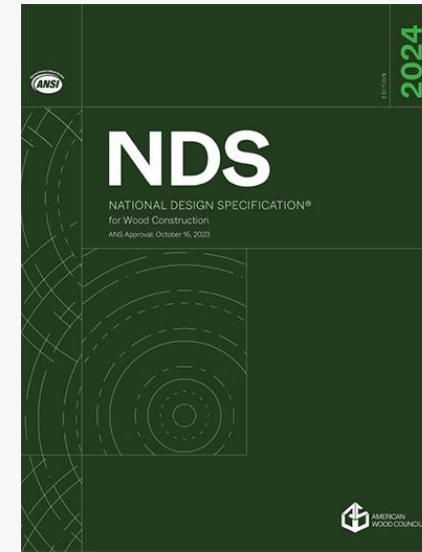
1. Explain the code provisions of the 2024 IBC and ASCE 7-22 that allow wood-over-podium building configurations, including fire and life safety provisions and seismic structural performance.
2. Understand how to develop the appropriate lateral loads in compliance with modern building codes and perform sample shear wall design and deflection calculations for a high-seismic zone.
3. Evaluate key updates in ASCE 7-22 that affect the seismic design of mid-rise, light-frame wood on concrete podium buildings.
4. Recognize critical design considerations, code interpretations, and potential pitfalls specific to podium construction—such as load transfer from wood to concrete systems—affecting structural integrity and ensuring occupant welfare.

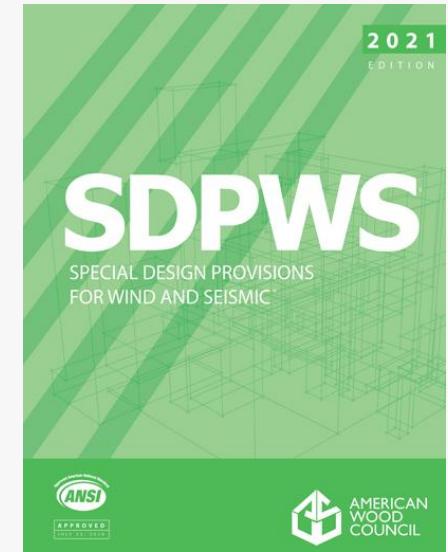
Outline


- » IBC code provisions including heights and areas
- » ASCE code provisions for Two-Stage Analysis
- » 5-story wood-sheathed light-frame shear wall design example
- » Podium design considerations

Five-Story Light-Frame Wood Structure Over Podium


DESIGN EXAMPLE


2024 IBC


ASCE 7-22
(2022)

2024 NDS

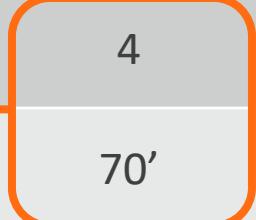
2021 SDPWS

What are podium structures?

Marselle Condominiums / PB Architects / Yu & Trochalakis / Matt Todd Photography

Fire and Life Safety

The building code defines:



- » Building size (area, height, stories)
- » Allowable materials
- » Fire protection requirements

Allowable building size based on:

- » Building use (occupancy)
- » Construction type
- » Sprinklers & fire department access

IBC Light-Frame Construction Type Differences

	TYPE III		TYPE V	
	A	B	A	B
Exterior Wall Material (Chapter 6)	Non-combustible, FRTW (LF, MT)	Non-combustible, FRTW (LF, MT)	Any materials permitted by code	Any materials permitted by code
Interior Elements (Chapter 6)	Any materials permitted by code	Any materials permitted by code	Any materials permitted by code	Any materials permitted by code
Allowable Stories (Table 504.4)	5	5	4	3
Allowable Height (Table 504.3)	85' 	75'	70' 	60'
Allowable Area per Story (Table 506.2)	72,000 ft ²	48,000 ft ²	36,000 ft ²	21,000 ft ²
Allowable Total Building Area*	216,000 ft ²	144,000 ft ²	108,000 ft ²	63,000 ft ²
Exterior Bearing Wall Rating (Table 601)	2-hour	2-hour	1-hour	0-hour
All Other Fire Ratings (Table 601)	1-hour	0-hour	1-hour	0-hour
<i>Residential (R-2) occupancy with NFPA 13 sprinklers without further increases. *Assuming max stories built.</i>				

Special Provisions

Horizontal Building Separation

- » IBC 602.1 requires that each building be classified as one of five construction types.
- » IBC 510 contains special provisions that allow different construction types in the same building or multiple “buildings” stacked on top of each other

Anaheim Stadium Apartments / Withee Malcolm Architects
Arden Photography

Horizontal Building Separation – 510.2

Considered separate buildings above and below for purposes of area & number of stories calculations if:

- » Overall height is still limited to max of either building
- » 3hr rated horizontal assembly
- » Building below is Type I-A with sprinklers
- » Enclosures penetrating horizontal assembly are 2hr rated
- » Occupancy above is A (occupant load <300), B, M, R or S
- » Occupancy below is any except H

The Flats at ISU, Normal, IL
OKW Architects
Precision Builders & Associates

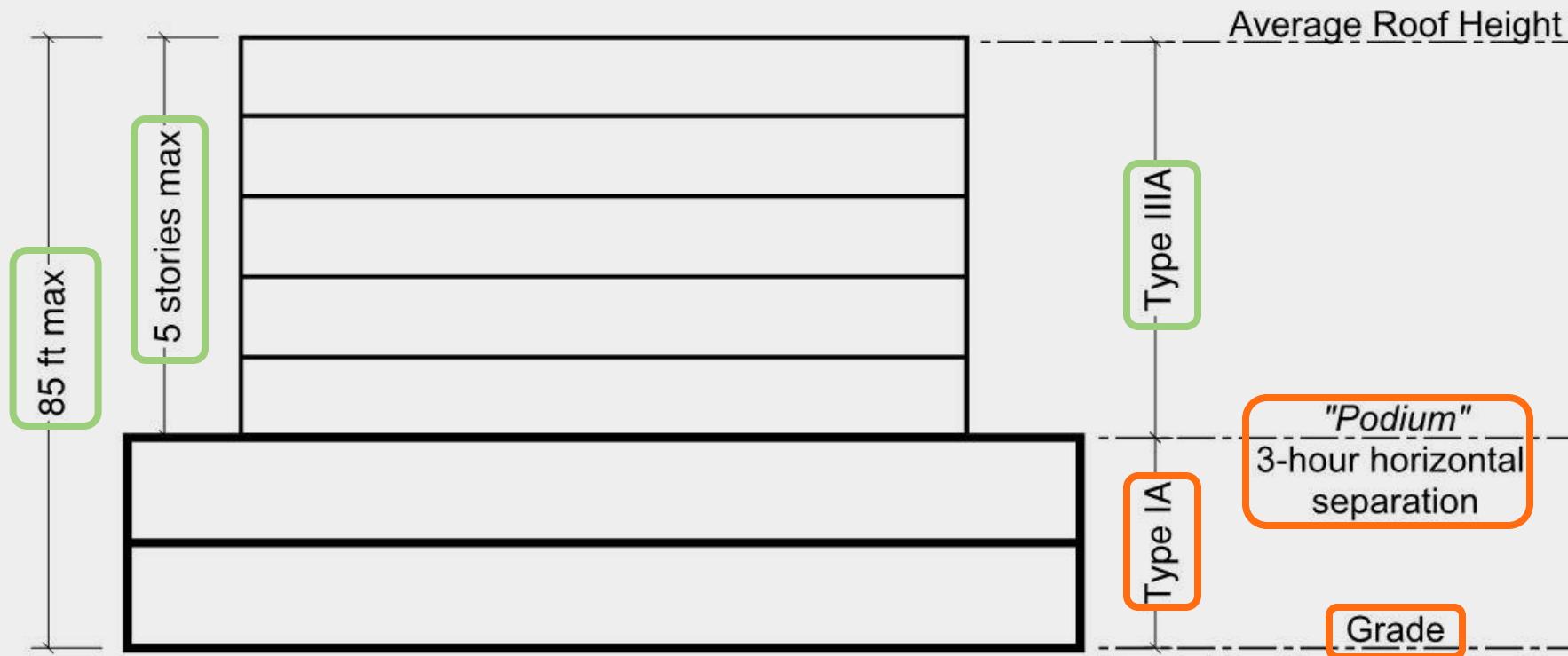
Special Provisions

Horizontal Building Separation

“Separate and distinct buildings” for:

- » Area determination
- » Number of stories
- » Construction type

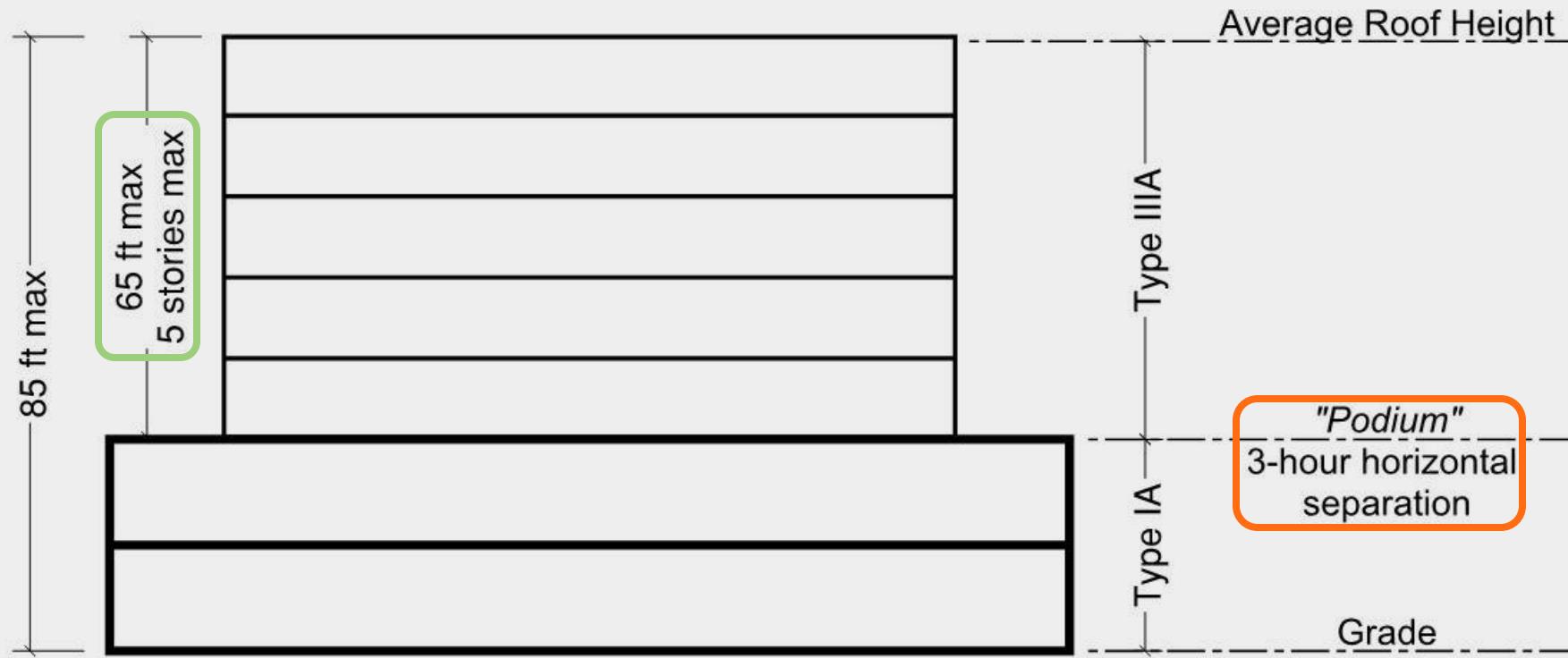
Building height...


still measured from grade

Broadway Plaza / Studio T Square / The Sobrato Organization

Photo: IMEG

Height and Story Limits

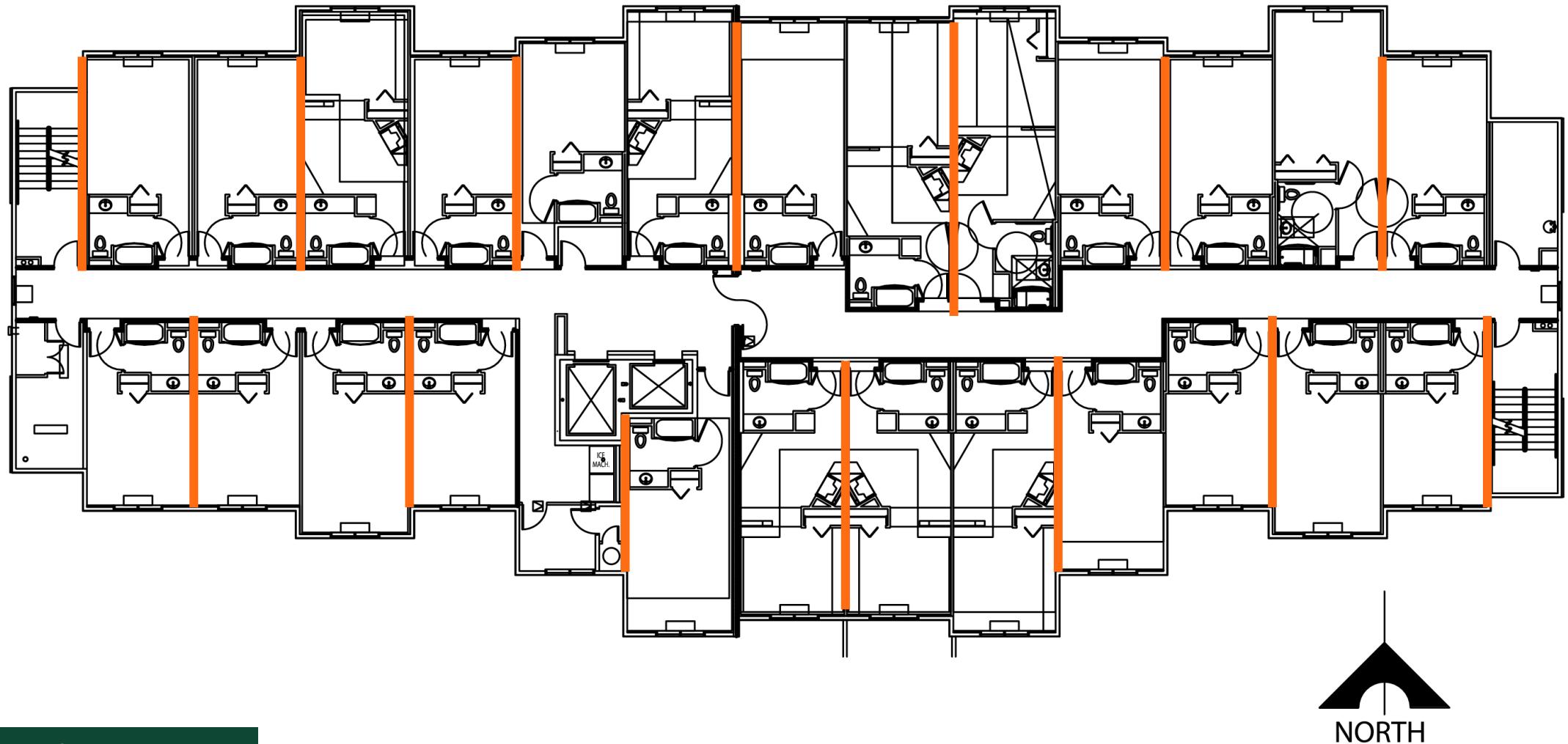


Seismic System Height Limits

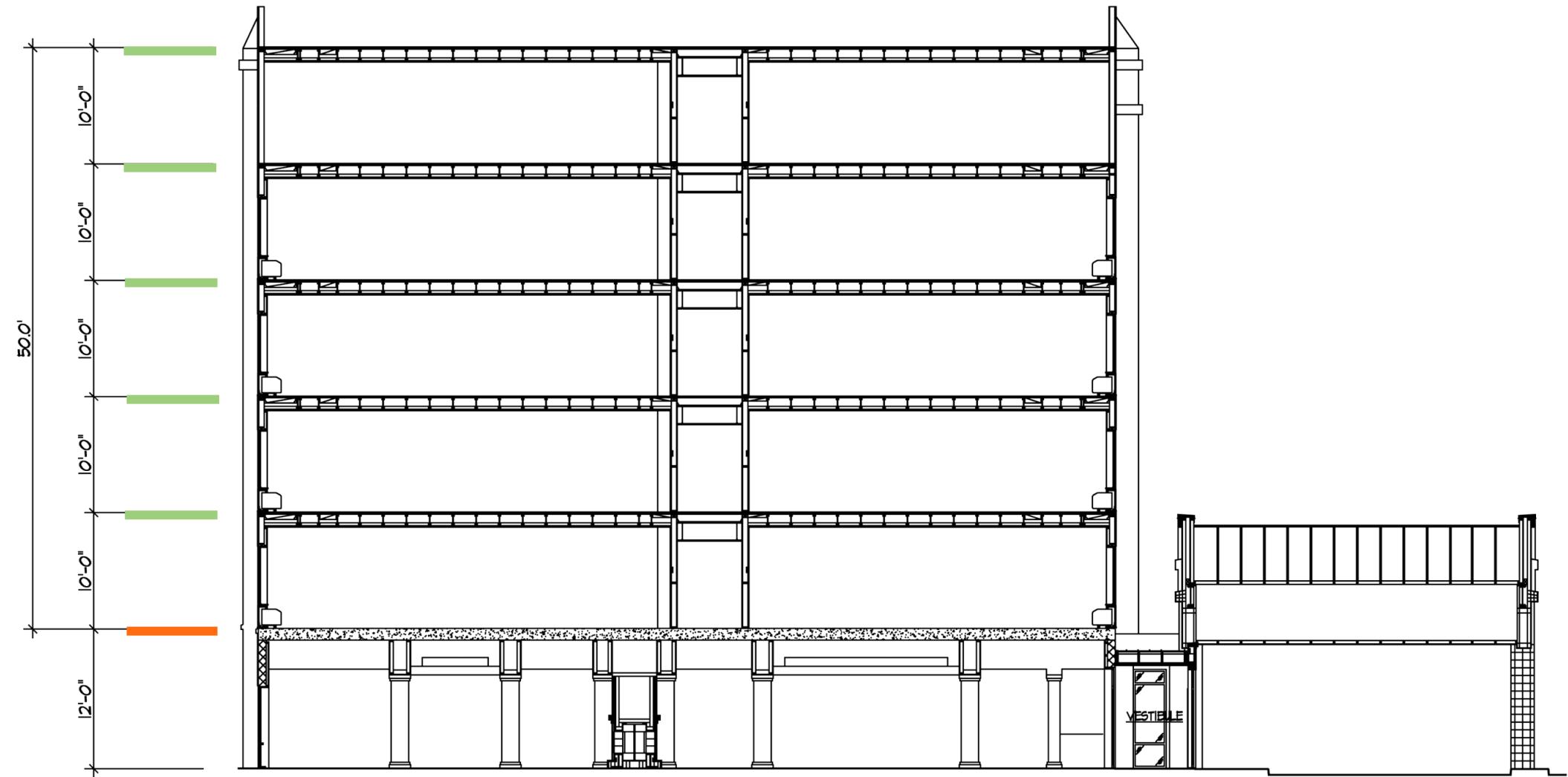
ASCE 7 Table 12.2-1: Wood Shear Walls

- » Seismic Design Categories D, E, F
- » 65-foot maximum, measured from the “base”
- » Base is the level at which horizontal seismic ground motions are imparted
- » Base = top of podium (see ASCE 7 Section 12.2.3.2 item f)

Seismic System Height Limits (SDC D-F)



Design Example: Building Elevation



Design Example: Figure 1.1

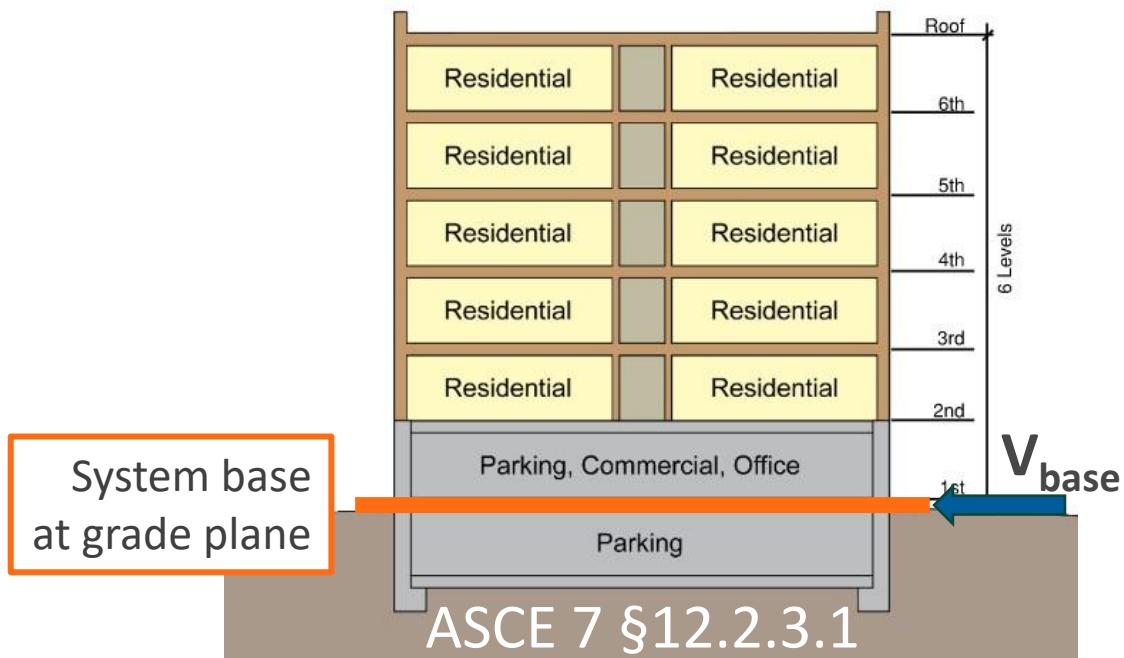
Design Example: Plan View

Design Example: Building Section

Design Example: Figure 1.3

Design Example: Gravity Loads

Roof Weights (psf)	
Roofing	5.0
Sheathing	3.0
Trusses + blocking	2.0
Insulation + sprinklers	2.0
Ceiling + misc.	15.0
Beams	1.0
Dead load	28.0
Live load	20.0


Floor Weights (psf)	
Flooring	1.0
Lightweight concrete	14.0
Sheathing	2.5
I-joist + blocking	4.0
Ceiling + misc.	7.0
Beams	1.5
Dead load	30.0
Live load	40.0

Two-Stage Seismic Analysis

- » Several options for vertical combination of seismic force-resisting systems (SFRS)
- » Occurs when there are different R factors for the upper/lower portions
- » Section 12.2.3.1 lets you design upper/lower separately, but have to treat entire building as one mass
- » **Section 12.2.3.2** lets you design upper/lower separately *and* define the base of the upper structure as the top of the lower structure
 - » Prevents the mass of the concrete podium from being inverted into the upper wood portion of the building

Seismic Base

- » Base is the level at which horizontal seismic ground motions are imparted
- » Base = top of podium (see ASCE 7 Section 12.2.3.2 item f)

Two-Stage Seismic Analysis

“Flexible upper portion above a rigid lower portion”

- » Stiffness of lower $\geq 10x$ Stiffness of upper
- » Period of structure $\leq 1.1x$ Period of upper
- » Upper designed using R_{upper} and ρ_{upper}
- » Lower designed using R_{lower} and ρ_{lower}
- » Reactions from upper amplified by $(R/\rho)_{\text{upper}} / (R/\rho)_{\text{lower}} \geq 1$
- » Upper analyzed with ELF or modal response
- » Lower analyzed with ELF
- » Upper SFRS height limits measured from base of upper
- » Lower portion designed for overstrength as required

Two-Stage Seismic Analysis

“Flexible upper portion above a rigid lower portion”

- » **Stiffness of lower $\geq 10x$ Stiffness of upper**
- » Stiffness, $k = F/\delta$
- » Upper: for flexible diaphragms, use stiffness of a representative wall (engineering judgement) based on shear wall loads & deflections
- » Lower: for rigid, use stiffness from 3-D analysis

Flexible vs Rigid Diaphragms

- » Idealized as **flexible** per ASCE 7-22 Section 12.3.1.1
- » Calculated as **flexible** per ASCE 7-22 Section 12.3.1.3
- » Calculated as **rigid** per SDPWS Section 4.1.7.2
- » If none of the above, assume **semi-rigid**

Save the Date:

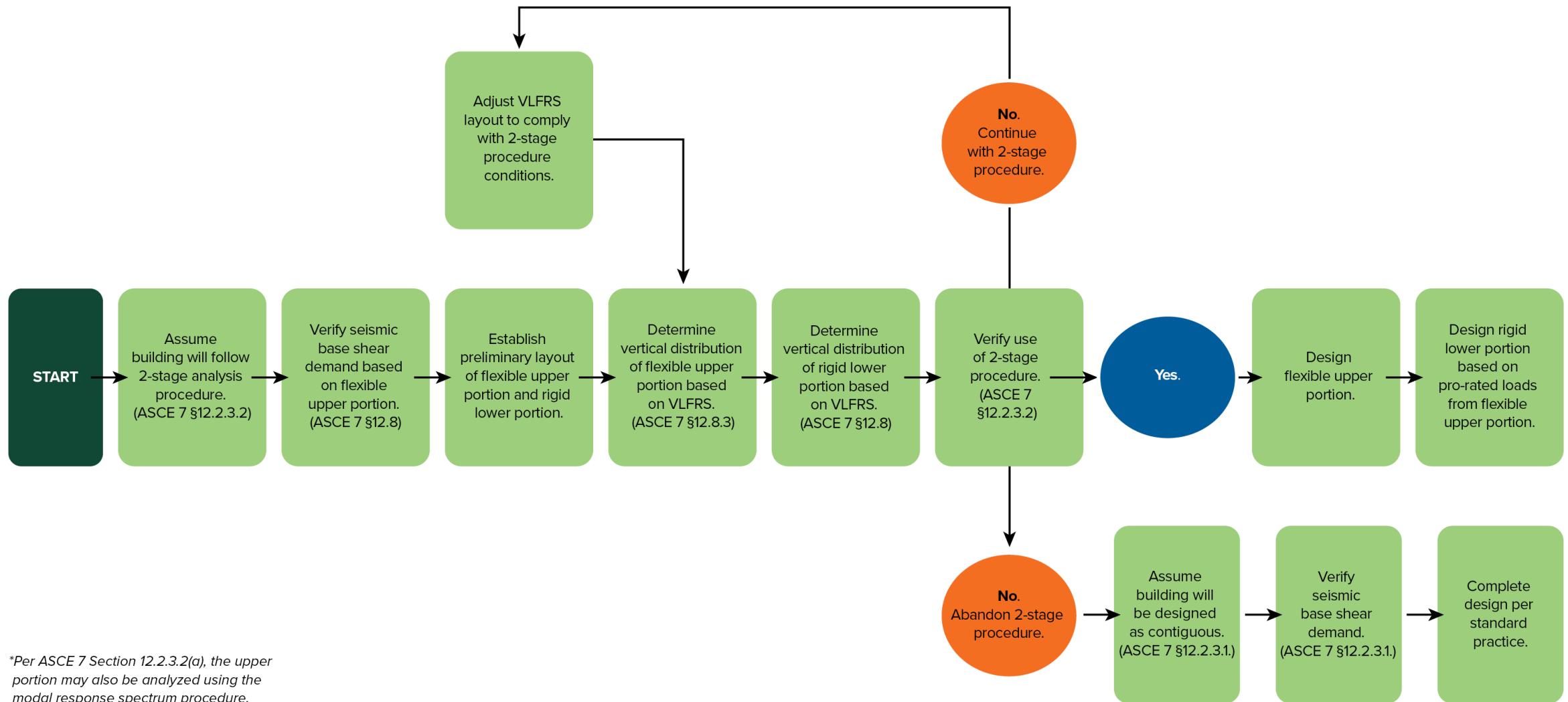
Our December 10, 2025 webinar will cover this topic in more detail!

Two-Stage Seismic Analysis

“Flexible upper portion above a rigid lower portion”

- » Period of structure $\leq 1.1 \times$ Period of upper

- » ASCE 7 Eq. 12.8-8:


- » $T_a = C_t (h_n)^x$

- » Often doesn't meet criteria

- » Rayleigh's Method (ASCE 41):

- »
$$T = 2\pi \sqrt{\left(\sum_{i=1}^n w_i \delta_i^2 \right) / \left(g \sum_{i=1}^n f_i \delta_i \right)}$$

Seismic Design Workflow

Seismic Design Criteria

ASCE 7 Table 12.2-1

Light-frame wood walls sheathed with wood structural panels rated for shear resistance

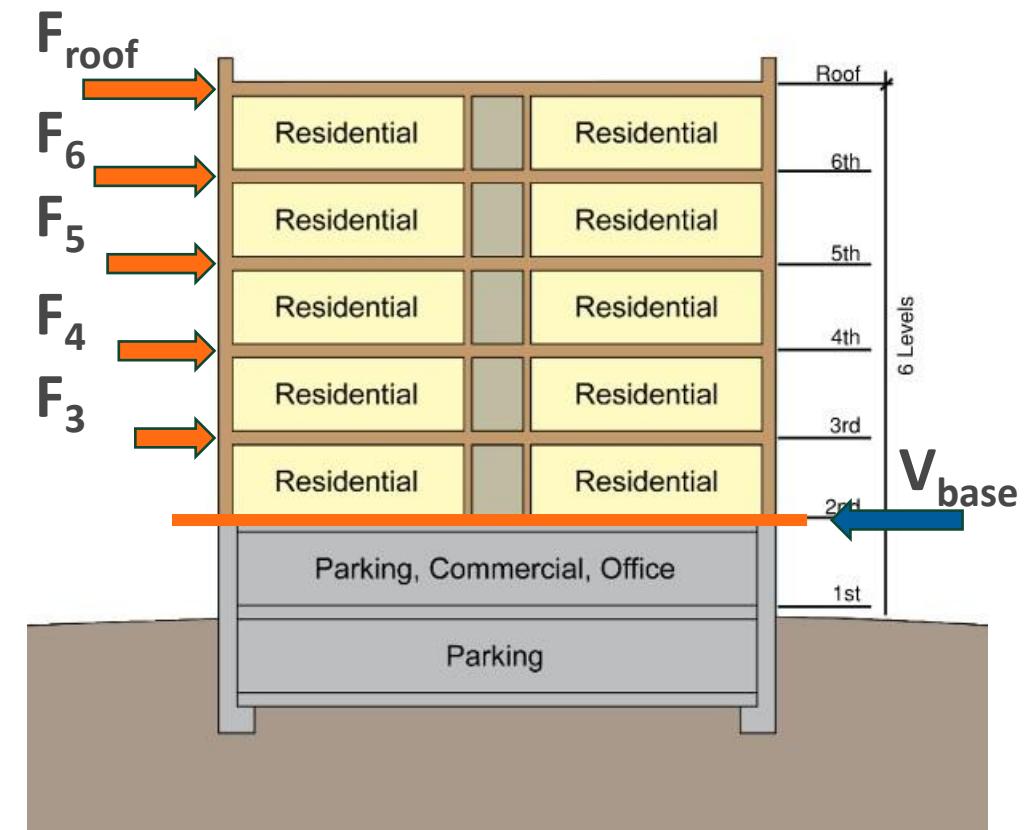
- » $R = 6.5$
- » $\Omega_0 = 3.0^*$
- » $C_d = 4.0$

Special reinforced concrete shear walls

- » $R = 5.0$
- » $\Omega_0 = 2.5$
- » $C_d = 5.0$

* Reduced to 2.5 for flexible diaphragms

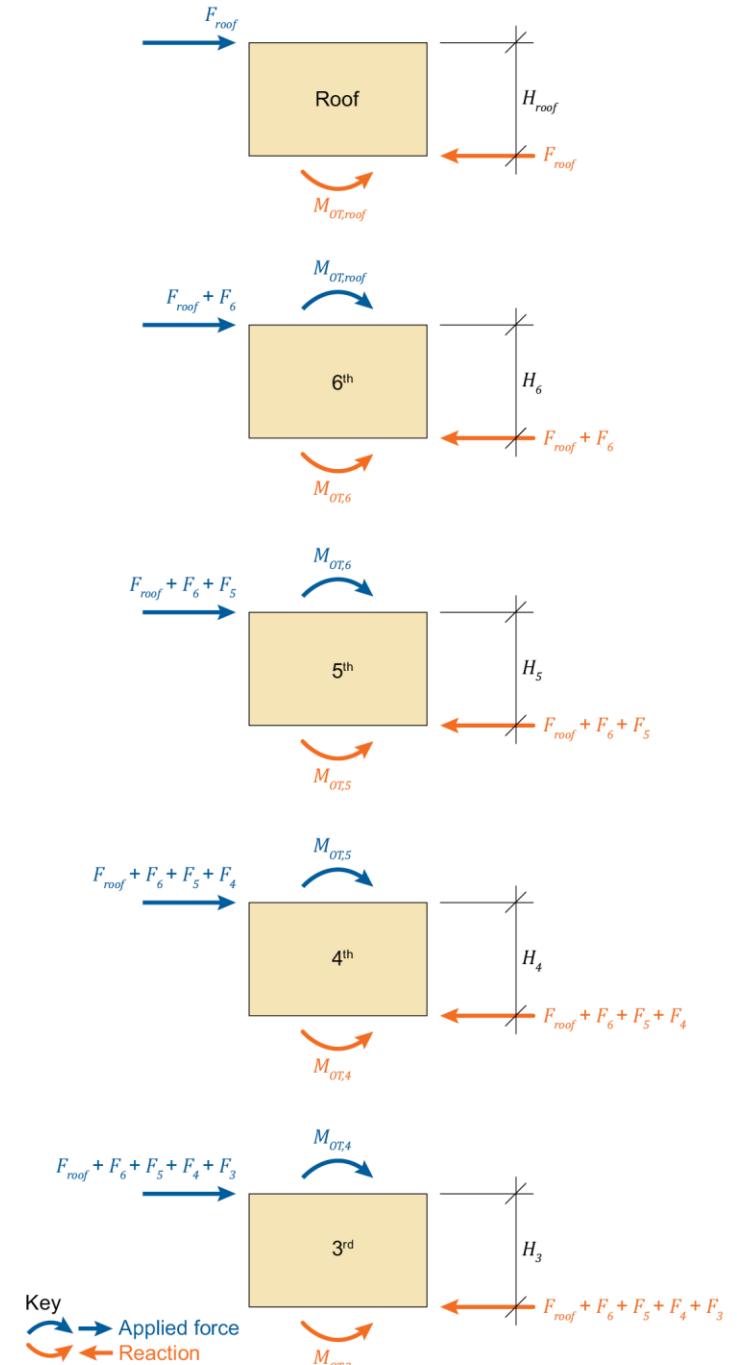
Seismic & Site Data


- » Site Class: D
- » $S_S = 1.808 \text{ g}$
- » $S_1 = 0.692 \text{ g}$
- » $S_{DS} = 1.206 \text{ g}$
- » $S_{D1} = 0.692 \text{ g}$
- » Risk Category: II
- » Seismic Importance Factor: 1.0
- » **Seismic Design Category: D**
- » Seismic Response Coefficient,
 $C_S = 0.186$
- » Seismic weight, $W = 2,460 \text{ k}$
- » Base Shear,
 $V = 0.186(2,460) = \mathbf{458 \text{ k}}$

Seismic Story Forces

» Story Force, $F_x = C_{vx} * V$

Level	W_x (kips)	C_{vx}	F_x (kips)	F_x/A (psf)
Roof	420	29%	133.5	11.12
6 th	510	28%	129.6	10.80
5 th	510	21%	97.2	8.10
4 th	510	14%	64.8	5.40
3 rd	510	7%	32.4	2.70
Sum	2,460	100%	458	


A = area of the floor plate, which is 12,000 ft²

Seismic Forces to Typical Shear Wall

Level	Story-Level Force, F (lb)	Cumulative Force, F_{total} (lb)
Roof	9,397	9,397
6 th	9,129	18,526
5 th	6,847	25,373
4 th	4,564	29,938
3 rd	2,282	32,220

Tributary Area from example is 845 sq ft.

Shear Wall Design

Single Table for Wind and Seismic

Sheathing

Fastener Spacing

Table 4.3A Nominal Unit Shear Capacities for Sheathed Wood-Frame Shear Walls ^{1,3,6}

Sheathing Material	Minimum Nominal Panel Thickness (in.)	Minimum Nail Bearing Length in Framing Member or Blocking, ℓ_m (in.)	Nail Type & Size ⁹ Length (in.) x Shank diameter (in.) x Head diameter (in.)	Wood-based Panels ⁴											
				Panel Edge Nail Spacing (in.)											
				6		4		3		2					
				v_n (plf)	G_s (kips/in.)	v_n (plf)	G_s (kips/in.)	v_n (plf)	G_s (kips/in.)	v_n (plf)	G_s (kips/in.)				
Wood Structural Panels - Structural ^{1,4,5}	5/16	1-1/4	6d common nail (2 x 0.113 x 0.266) ⁸	560	13	10	840	18	13	1090	23	16	1430	35	22
	3/8 ²	1-3/8	8d common nail (2-1/2 x 0.131 x 0.281) ⁸	645	19	14	1010	24	17	1290	30	20	1710	43	24
	7/16 ²			715	16	13	1105	21	16	1415	27	19	1875	40	24
	15/32	1-1/2	10d common nail (3 x 0.148 x 0.312) ^{8,10}	785	14	11	1205	18	14	1540	24	17	2045	37	23
Wood Structural Panels - Sheathing ^{4,5}	5/16	1-1/4	6d common nail (2 x 0.113 x 0.266) ⁸	505	13	9.5	755	18	12	980	24	14	1260	37	18
	3/8	1-3/8	8d common nail (2-1/2 x 0.131 x 0.281) ⁸	560	11	8.5	840	15	11	1090	20	13	1430	32	17
	3/8 ²			615	17	12	895	25	15	1150	31	17	1485	45	20
	7/16 ²			670	15	11	980	22	14	1260	28	17	1640	42	21
Plywood Siding	15/32	1-1/2	10d common nail (3 x 0.148 x 0.312) ^{8,10}	730	13	10	1065	19	13	1370	25	15	1790	39	20
	19/32			870	22	14	1290	30	17	1680	37	19	2155	52	23
Particleboard Sheathing - (M-S "Exterior Glue" and M-2 "Exterior Glue")	5/16	1-1/4	6d galv. ⁷ casing nail (2 x 0.099 x 0.142)	950	19	13	1430	26	16	1860	33	18	2435	48	22
	3/8	1-3/8	8d galv. ⁷ casing nail (2-1/2 x 0.113 x 0.155)	390	13		590	16		770	17		1010	21	
	3/8			450	16		670	18		870	20		1150	22	
	1/2			335	15		505	17		645	19		840	22	
Structural Fiberboard Sheathing	1/2	6d common nail (2 x 0.113 x 0.266) ⁸	365	18		530	20		670	21		880	23		
	5/8		390	18		590	20		755	22		980	24		
	1/2	8d common nail (2-1/2 x 0.131 x 0.281) ⁸	520	21		770	23		1010	24		1290	25		
	25/32	10d common nail (3 x 0.148 x 0.312) ⁸	560	21		855	23		1105	24		1455	26		
Structural Fiberboard Sheathing	1/2	11 ga. galv. ⁷ roofing nail (1-1/2 x 0.120 x 7/16)	475	4.0		645	5.0		730	5.5					
	25/32		475	4.0		645	5.0		730	5.5					

2021 AWC SDPWS

Fasteners

Shear Wall Design

- » SDPWS 2021:
 - » ASD, seismic: $v_{ASD} = v_{nom}/2.8$
 - » ASD, wind: $v_{ASD} = v_{nom}/2.0$
 - » LRFD, seismic: $v_{LRFD} = v_{nom} * 0.50$
 - » LRFD, wind: $v_{LRFD} = v_{nom} * 0.80$

Read the footnotes!

- » Reduce capacities if not Douglas-Fir-Larch or Southern Pine

Shear Wall Design

Sheathing and Nailing

Level	F_{total} (lb)	Wall Length (ft)	ASD Design Shear (plf)	Wall Sheathed 1 or 2 sides	Edge Nailing (in. o.c.)	Allowable Shear (plf)
Roof	9,397	29	227	1	6	310
6 th	18,526	29	447	1	4	460
5 th	25,373	29	612	1	2	770
4 th	29,938	29	723	1	2	770
3 rd	32,220	29	778	2	4	920

Shear Wall Design

Continuous Tiedown System

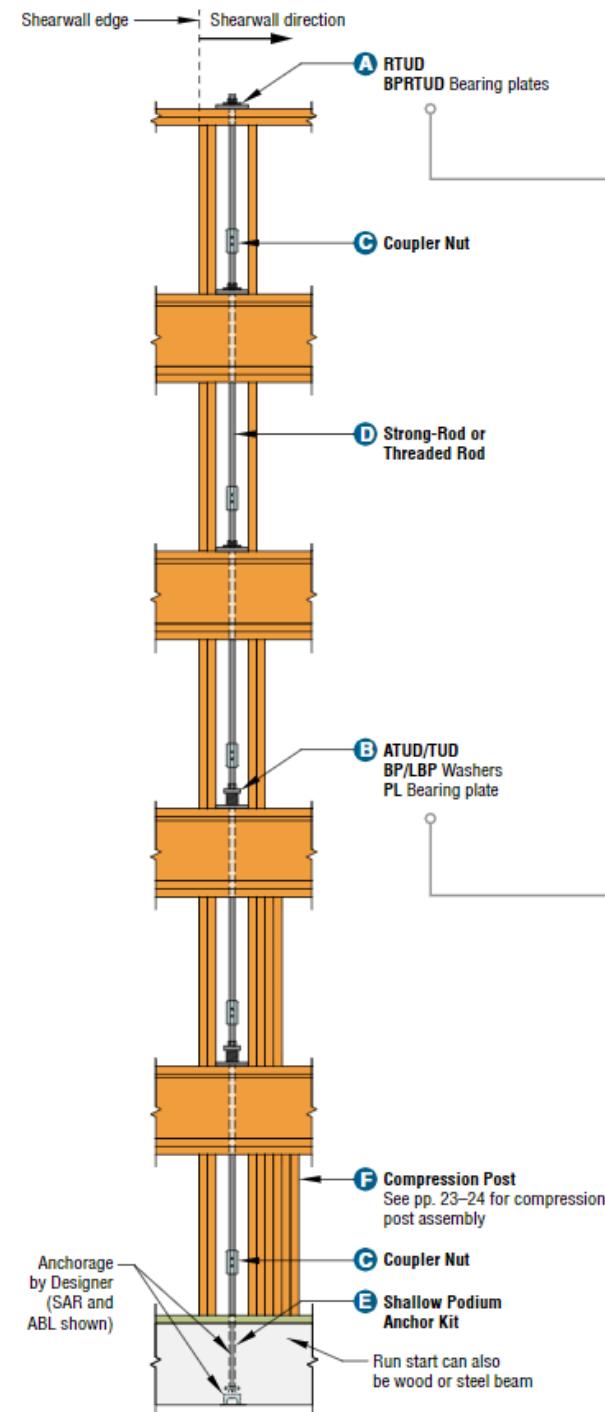
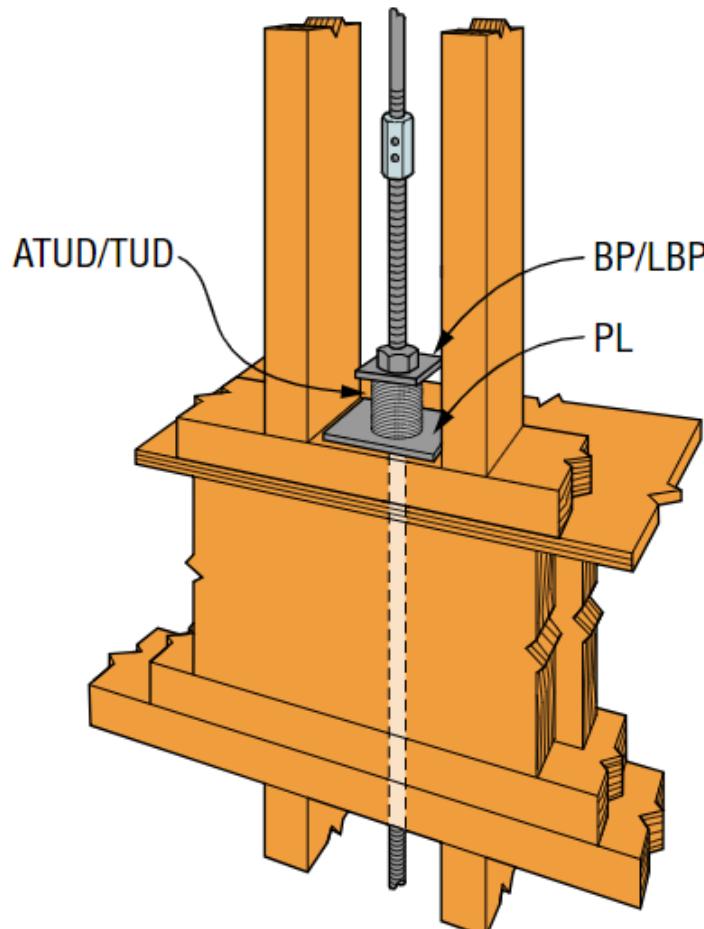
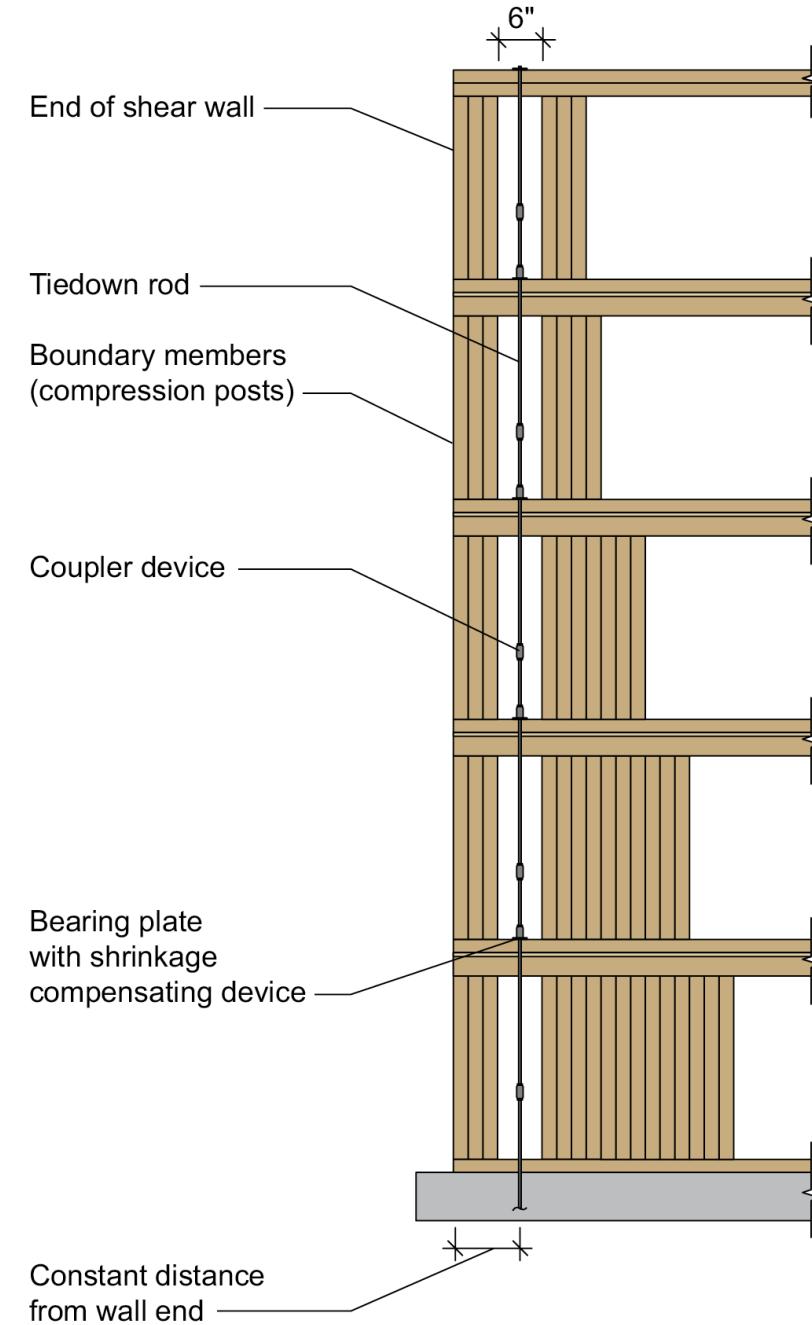
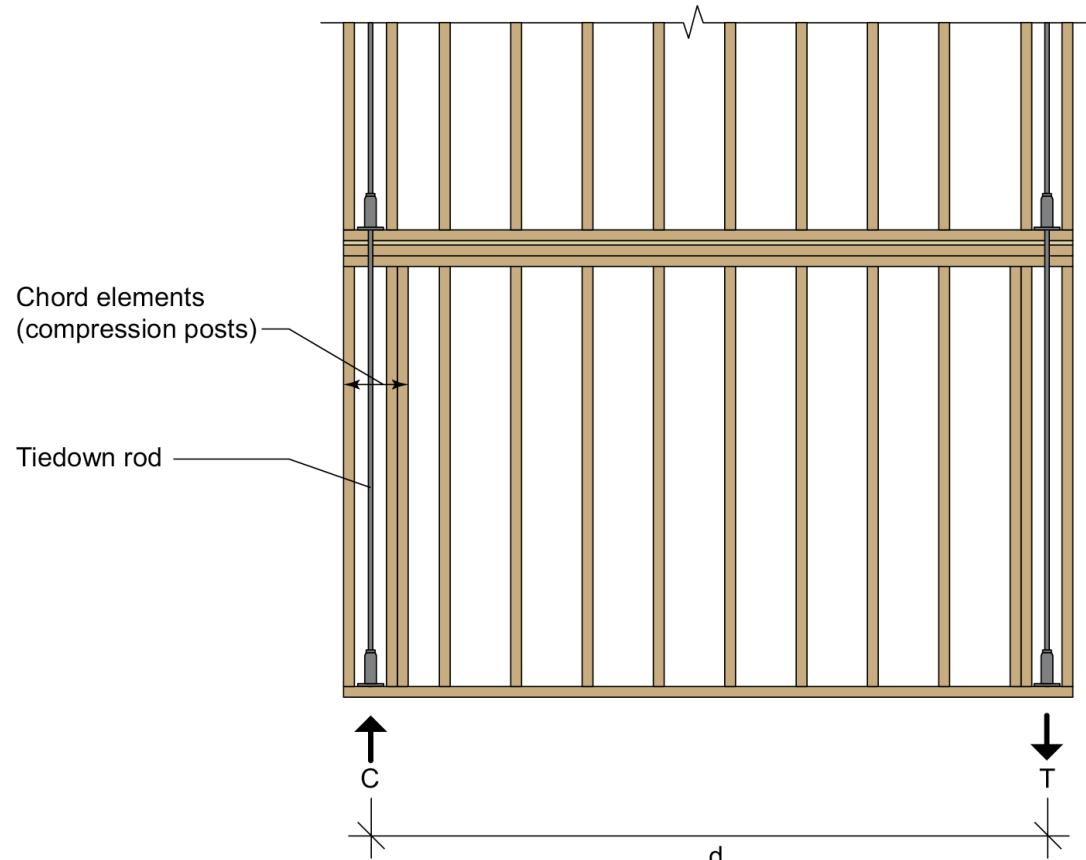





Image: Simpson Strong-Tie

Shear Wall Design

Compression Chord

Shear Wall Design

Compression Chord

$$F'_c = 450 \text{ psi}$$

$$F'_{c\perp} = 625 \text{ psi}$$

Level	Chord Posts	Area (in. ²)	P_{allow} (k)	Compression Demand (k)	D-C Ratio
Roof	(6) 2x4	31.5	14.19	2.60	18%
6 th	(7) 2x4	36.8	16.55	8.11	49%
5 th	(10) 2x4	52.5	23.65	15.94	67%
4 th	(13) 2x4	68.3	30.74	25.48	83%
3 rd	(16) 2x4	84.0	37.84	36.15	96%

Shear Wall Design

Tension Rod

$$F_u = 58 \text{ ksi}$$

$$F_{nt} = 43.5 \text{ ksi}$$

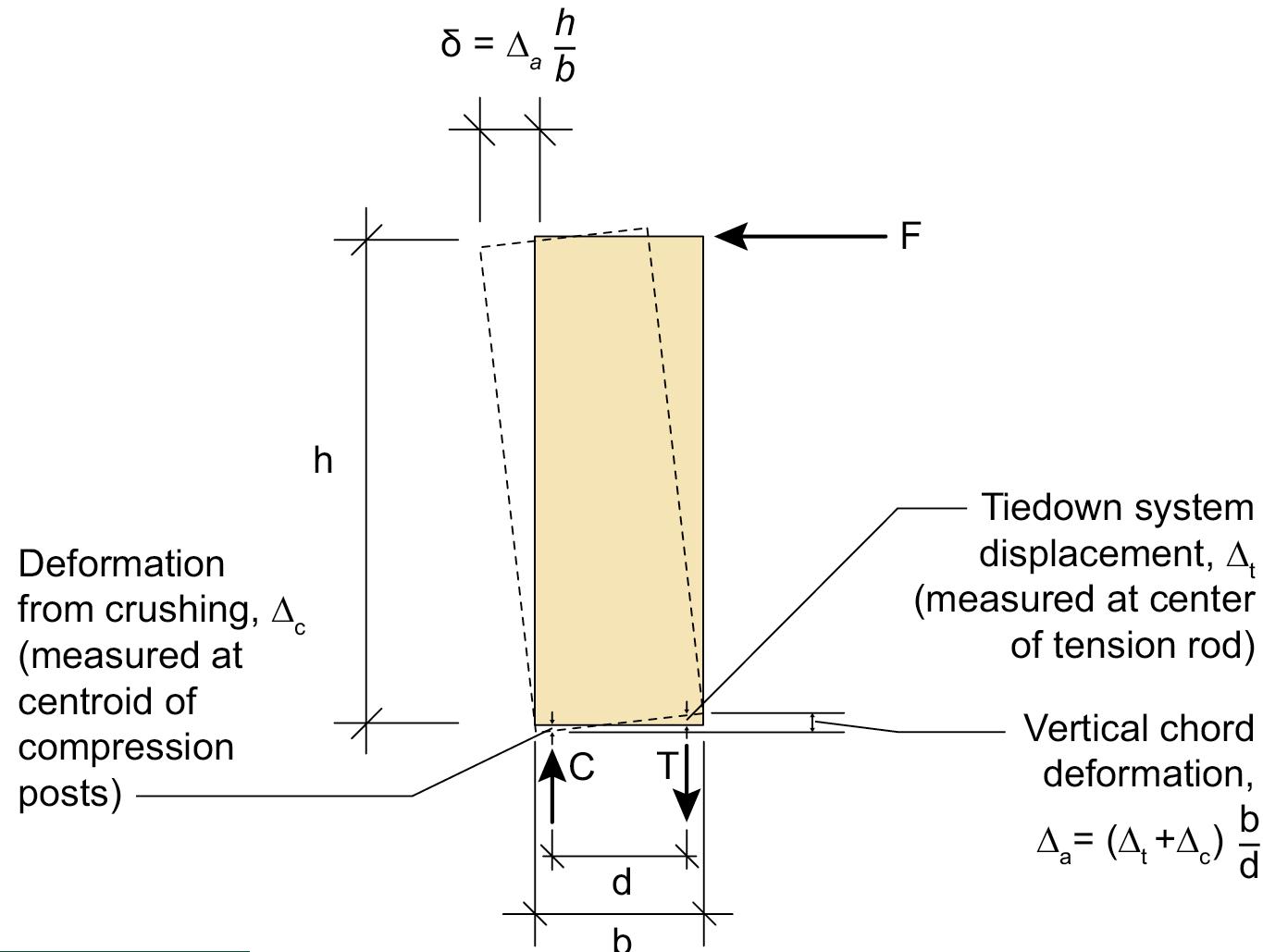
Level	Rod Diameter (in.)	A_g (in. ²)	P_{allow} (k)	Tension Demand (k)	D-C Ratio
Roof	5/8	0.307	14.19	1.351	20%
6 th	5/8	0.307	16.55	2.833	42%
5 th	3/4	0.442	23.65	6.099	63%
4 th	1	0.785	30.74	10.591	62%
3 rd	1 1/8	0.994	37.84	15.742	73%

Shear Wall Design

Bearing Plate

- » Check bearing capacity
- » Check plate bending (not shown)

Level	Bearing Plate Size (in.)	A_{Brg} (in. ²)	Bearing Capacity (k)	Bearing Demand (k)	D-C Ratio
Roof	3 x 3 x 3/8	8.48	14.19	1.351	23%
6 th	3 x 3 x 3/8	8.48	16.55	1.482	25%
5 th	3 x 3 1/2 x 1/2	9.81	23.65	3.266	48%
4 th	3 x 4 x 5/8	10.89	30.74	4.492	60%
3 rd	3 x 4 x 5/8	10.65	37.84	5.151	71%


Shear Wall Deflection

$$\delta_{SW} = \frac{8\nu h^3}{EAb} + \frac{\nu h}{1,000G_a} + \frac{h\Delta_a}{b} \quad (\text{SPDWS Equation 4.3-1})$$

Bending deformation Shear deformation
+ nail slip Rigid body rotation

- » ν = unit shear
- » E = modulus of elasticity of end posts
- » A = cross sectional area of end posts
- » G_a = apparent shear stiffness
- » b = shear wall length
- » h = shear wall height
- » Δ_a = vertical deformation of wall anchorage system

Vertical Chord Deformation, Δ_a

Vertical Chord Deformation, Δ_a

Level	Rod Elongation (in.)	Take-Up Device Slack (in.)	Take-Up Device Elongation (in.)	Crushing Under Post (in.)	Bearing Plate Crushing (in.)	Δ_a (in.)
Roof	0.033	0.031	0.030	0.021	0.009	0.131
6 th	0.066	0.031	0.030	0.052	0.009	0.199
5 th	0.099	0.031	0.030	0.078	0.019	0.272
4 th	0.096	0.031	0.030	0.100	0.032	0.309
3 rd	0.114	0.031	0.030	0.046	0.047	0.289

Shear Wall Deflection (3-terms)

$$\delta_{sw} = \frac{8vh^3}{EAb} + \frac{vh}{1,000G_a} + \frac{h\Delta_a}{b}$$

Level	Shear Force (plf)	Chord Post Area (in. ²)	Edge Nailing	G_a (k/in.)	Δ_a (in.)	1 st Term (in.)	2 nd Term (in.)	3 rd Term (in.)	δ_e (in.)
Roof	324	31.5	6" o.c.	22	0.131	0.002	0.147	0.045	0.194
6 th	639	36.8	4" o.c.	30	0.199	0.003	0.213	0.069	0.284
5 th	875	52.5	2" o.c.	52	0.272	0.003	0.168	0.094	0.265
4 th	1,032	68.3	2" o.c.	52	0.309	0.002	0.199	0.107	0.307
3 rd	1,111	84.0	2 x 4" o.c.	60	0.289	0.002	0.185	0.100	0.287

Story Drift

$$\delta_{DE} = \frac{C_d \delta_e}{I_e} + \cancel{\delta_{di}}, \quad C_d = 4.0$$

$$\Delta_{allow} = 0.020h_{sx}$$

Level	δ_e (in.)	δ_{DE} (in.)	Story Height (ft)	Δ_{allow} (in.)
Roof	0.194	0.78	10	2.40
6 th	0.284	1.14	10	2.40
5 th	0.265	1.06	10	2.40
4 th	0.307	1.23	10	2.40
3 rd	0.287	1.15	10	2.40

Reactions to Podium

- » Gravity reactions applied directly to podium (no scaling)
- » Seismic reactions (shear and overturning) from wood scaled up and applied to podium
 - » $(R/\rho)_{\text{upper}} / (R/\rho)_{\text{lower}} \geq 1$
 - » Shear: often accounted for as a seismic weight included in concrete base shear calculation
 - » Overturning often accounted for as point load reactions from wood shear walls

Overstrength Loads

Podium supports **discontinuous walls**

- » Shear and point loads must include overstrength, Ω_0 , for the design of the podium
- » In ASCE 7, *connections* need not include overstrength (i.e. sill plate anchors, tiedown anchors)
- » In ACI 318, anchorage to concrete *may* require overstrength

Overstrength Loads

Alternative to $\Omega_0 = 3.0$

- » Seismic overstrength load “*need not be taken as larger than... the capacity-limited horizontal seismic load effect*” which is equal to “*the maximum force that can develop in the element as determined by a rational, plastic mechanism analysis.*”
- » Yielding of other elements limits the load that can be delivered to the system

Key Resources

The image is an aerial photograph of a modern residential complex. The buildings feature a mix of architectural styles, including light-colored stonework and dark grey panels. The complex is built on a hillside, with lower-level buildings and a higher-level structure. In the foreground, a street with several cars is visible, along with a parking lot. The background shows a dense area of trees and other residential buildings under a clear blue sky. A graphic overlay in the bottom right corner features a diamond shape with a white pine tree in the center. The word "WOODWORKS" is written in a bold, sans-serif font across the middle of the diamond. Along the bottom edge of the diamond, the words "WOOD PRODUCTS" and "COUNCIL" are written in a smaller, curved font. A small trademark symbol (TM) is located at the bottom center of the diamond.

UPDATED April 2019

The logo for WoodWorks Wood Products Council. It features a stylized tree icon inside a diamond shape on the left, followed by the word "WOODWORKS" in a large, bold, sans-serif font, with "WOOD PRODUCTS COUNCIL" in a smaller font below it.

DESIGN EXAMPLE

A Design Example of a Cantilever Wood Diaphragm

A wide-angle photograph of the Crescent Terminus apartment complex. The building features a modern design with a mix of light-colored panels and large glass windows. A prominent feature is a long, cantilevered section extending over a parking area. The building is surrounded by other urban structures, including a taller building with blue-tinted glass and a modern residential tower. The sky is clear and blue.

Photo: Robert L. Cohen

Developed for WoodWorks by
R. Terry Malone, PE, SE
Scott Breneman, PhD, PE, SE

A photograph of the Carlton 12 apartment complex, showing a modern building with a grid of large windows. The building is set against a clear blue sky. A small inset image in the bottom right corner shows a close-up view of a structural detail, likely the cantilevered section of the building.

Photo: Michael P. Smith

Photo: TOP: Crescent Terminus, Architect: Lord Aeck Sargent, Engineer: SCA Consulting Engineers, Location: Atlanta, GA
 INSET: Carlton 12, Architect: Path Architecture, Engineer: Muring Structural Engineers, Location: Portland, OR

QUESTIONS?

This concludes The American
Institute of Architects Continuing
Education Systems Course

Jose Machuca, SE
Holmes
jose.machuca@holmes.us

Matt Cloninger, PE, SE
WoodWorks
matt.cloninger@woodworks.org

Copyright Materials

This presentation is protected by US
and International Copyright laws.

Reproduction, distribution, display and use of
the presentation without written permission
of the speaker is prohibited.

© The Wood Products Council 2025

Funding provided in part by the Softwood Lumber Board

Disclaimer: The information in this presentation, including, without limitation, references to information contained in other publications or made available by other sources (collectively “information”) should not be used or relied upon for any application without competent professional examination and verification of its accuracy, suitability, code compliance and applicability by a licensed engineer, architect or other professional. Neither the Wood Products Council nor its employees, consultants, nor any other individuals or entities who contributed to the information make any warranty, representative or guarantee, expressed or implied, that the information is suitable for any general or particular use, that it is compliant with applicable law, codes or ordinances, or that it is free from infringement of any patent(s), nor do they assume any legal liability or responsibility for the use, application of and/or reference to the information. Anyone making use of the information in any manner assumes all liability arising from such use.