

Advancing Mass Timber through Accelerator Programs

Credits: 1.0 AIA/CES HSW LUs, 1.0 PHD credit, 0.10 ICC credit

SM
MASS TIMBER+
OFFSITE CONSTRUCTION CONFERENCE

PRODUCED BY

Forest Economic Advisors

Arizona Dabrusin
DCI

Susan Jones
Heartwood

Nicole Spina
NYCEDC

WoodWorks | The Wood Products Council is a registered provider of AIA-approved continuing education under Provider Number G516. All registered **AIA CES** Providers must comply with the AIA Standards for Continuing Education Programs. Any questions or concerns about this provider or this learning program may be sent to AIA CES (cessupport@aia.org or (800) AIA 3837, Option 3).

This learning program is registered with **AIA CES** for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

AIA continuing education credit has been reviewed and approved by **AIA CES**. Learners must complete the entire learning program to receive continuing education credit. AIA continuing education Learning Units earned upon completion of this course will be reported to **AIA CES** for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

This course examines how accelerator initiatives—such as the NYC Mass Timber Studio—are reshaping urban construction by supporting the adoption of mass timber as a viable alternative to traditional structural systems. These programs provide critical support for design teams to evaluate material performance, optimize cost and constructability, and navigate regulatory pathways for innovative building approaches. Focusing on a seven-story residential development in Harlem, NY, participants will gain insights into how mass timber and hybrid systems can meet or exceed safety, fire resistance, and code compliance requirements, while also delivering added benefits in construction efficiency, indoor environmental quality, occupant well-being, and cost savings. The course compares multiple structural systems, including various floor assemblies, and highlights how mass timber contributes to healthier, more resilient building environments with lower embodied carbon impacts. Intended for architects, engineers, developers, and policymakers, this course highlights how accelerator projects serve as a launchpad for scalable solutions in the evolving urban development landscape.

Learning Objectives

1. Explain how design accelerator initiatives help advance the adoption of mass timber in urban construction through technical support, research, and pilot demonstrations.
2. Identify key code considerations, including fire safety, structural performance, and height limitations, related to the use of mass timber in mid-rise urban buildings.
3. Analyze the advantages of different mass timber floor assemblies (including dry-installation systems) on construction logistics, design flexibility, and embodied carbon impacts.
4. Use findings from real-world case studies to inform decision-making on structure selection, material efficiency, and project planning for similar developments.

A large, modern building with a curved, light-colored wooden facade and a glass-enclosed entrance. The building is set against a clear blue sky. The facade has a vertical grain pattern. A glass-enclosed entrance is visible on the right side.

Advancing Mass Timber Through Accelerator Programs: New York City Mass Timber Studio

Nicole Spina, New York City Economic Development Corporation

Susan Jones, FAIA, *alteriorjones*

Arizona Dabrusin, PE, LEED AP BD+C, DCI Engineers

NEW YORK CITY MASS TIMBER STUDIO

Newlab

About NYCEDC Green Economy + Climate Innovation

Building Our Future Economy

Ensure businesses, investors, and employees have confidence in NYC

Enable equitable growth and development of priority industries

Deliver future-forward infrastructure

Shape the growth of and strengthen neighborhoods where New Yorkers live, learn, and work

About NYCEDC Green Economy + Climate Innovation

Building Our Future Economy

225 managed properties

64M square feet of real estate

170 capital projects

\$9B capital budget

435 initiatives

\$1B life sciences investment

\$200M offshore wind investment

**New York City's green economy
will become the anchor of a
prosperous, equitable, and just
future for New Yorkers, while
delivering the bold solutions
needed to address climate change**

GREEN ECONOMY

ACTION PLAN

NYCEDC Green Economy partners with public and private stakeholders to de-risk and scale emerging low carbon materials & technologies for the built environment


PILOT DEMOS IN LIVE URBAN ENVIRONMENTS

REGULATORY WAYFINDING & IMPLEMENTATION

SCALE ACROSS USE CASES VIA PROJECTS & PROCUREMENTS

STUDIO OVERVIEW

New York City must expand use of low carbon building materials, including mass timber, to reduce embodied carbon emissions for new buildings, infrastructure, and major retrofits.

Delivering successful mass timber projects requires critical considerations of code compliance, fire safety, and structural integrity to scale in NYC .

The **NYC Mass Timber Studio** is a Climate Innovation Program to provide grants, technical assistance and regulatory feedback to design and development teams working on NYC based projects.

*BPL New Lots Branch by MASS Design & TYLin
Mass Timber Studio Cohort 1 Participants*

STUDIO PARTNERS

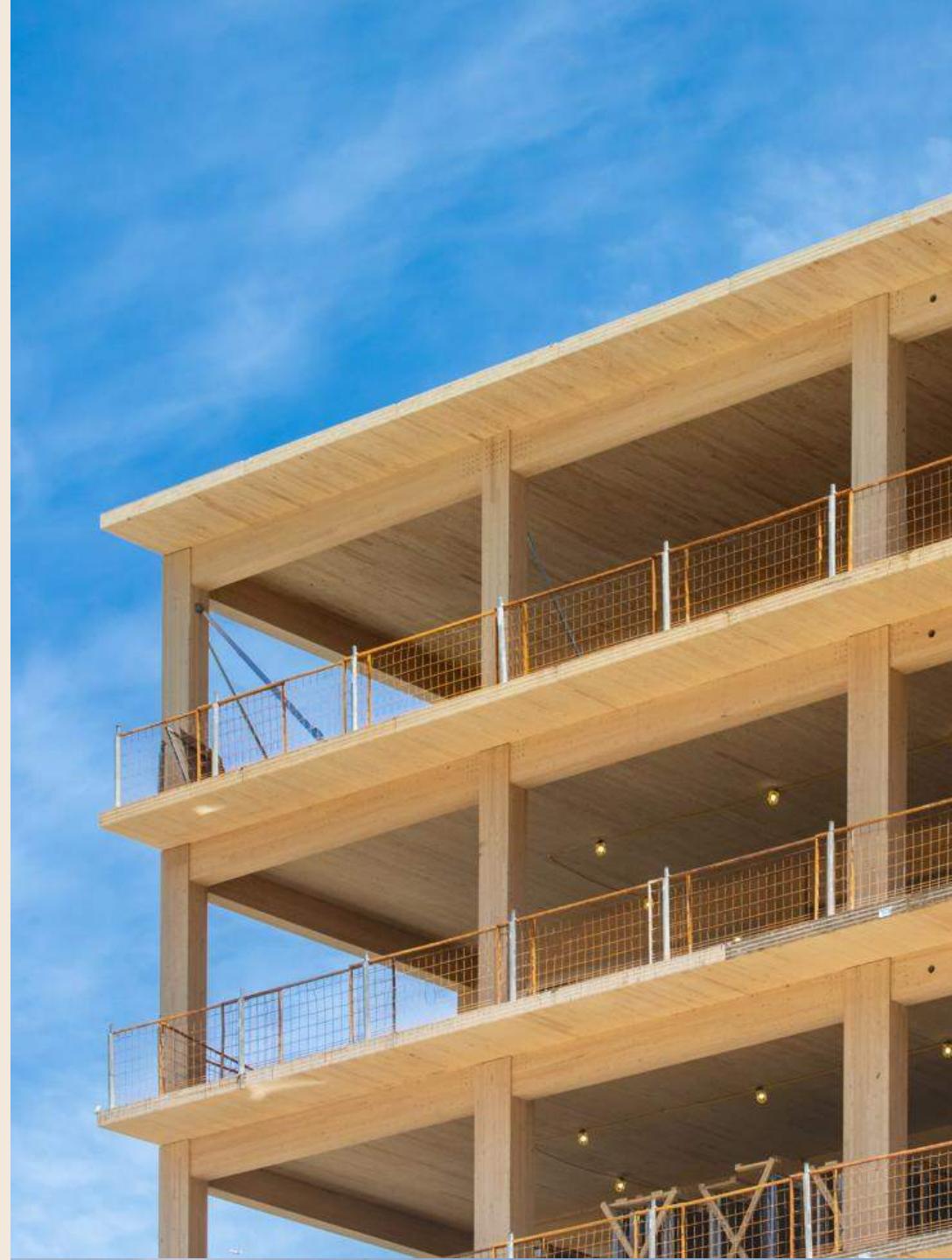
Operators

NYC/EDC

NYC
Mayor's Office of Climate & Environmental Justice

Advisors

AIA New York



NYC
Buildings

Funding Supporters

SLIB
SOFTWOOD LUMBER BOARD

STUDIO OBJECTIVES

FOR PROJECT TEAMS

- **PROJECT SUPPORT**

Advance feasibility, design and engineering of real-world mass timber projects in NYC.

- **REGULATORY NAVIGATION**

Receive guidance on NYC's permitting, code and safety requirements for mass timber.

- **INDUSTRY CONNECTIONS**

Engage with a network of technical experts, agency advisors and peers to build momentum and unlock deployment opportunities.

FOR NYCEDC

- **DEMONSTRATION PATHWAYS**

Identify barriers and enablers to mass timber construction through hands-on project work.

- **POLICY & MARKET READINESS**

Generate insights to inform local code updates, permitting guidance and decarbonization efforts.

- **SUPPLY CHAIN & INDUSTRY DEVELOPMENT**

Lay the groundwork for a regional mass timber economy by creating demand signals and highlighting local project potential.

STUDIO THEORY OF CHANGE

[OH] Regulatory
Office Hours

[TA]
Technical
Assistance

[SME]
Subject-Matter Expert
Workshops

KICK OFF

IDENTIFY DESIGN, REGULATORY,
AND TECHNICAL FEASIBILITY
FOCUS AREAS

INDUSTRY
ROUNDTABLE #1

DESIGN & FEASIBILITY
ANALYSIS CONTINUED,
ESTABLISH REGULATORY
PATH FORWARD

INDUSTRY
ROUNDTABLE #2

FINAL
REVIEW

STUDIO PROGRAMMING

WoodWorks providing Technical Assistance Sessions to discuss technical questions and review:

- Project overview and updates
- Grids and spans
- Acoustics
- Fire design
- Moisture protection
- Connecting the team with other mass timber experts
- Share lessons-learned

NYCDOB and FDNY holding monthly office hours for teams seeking responses to regulatory questions as they advance towards or work through permitting, including clarification on:

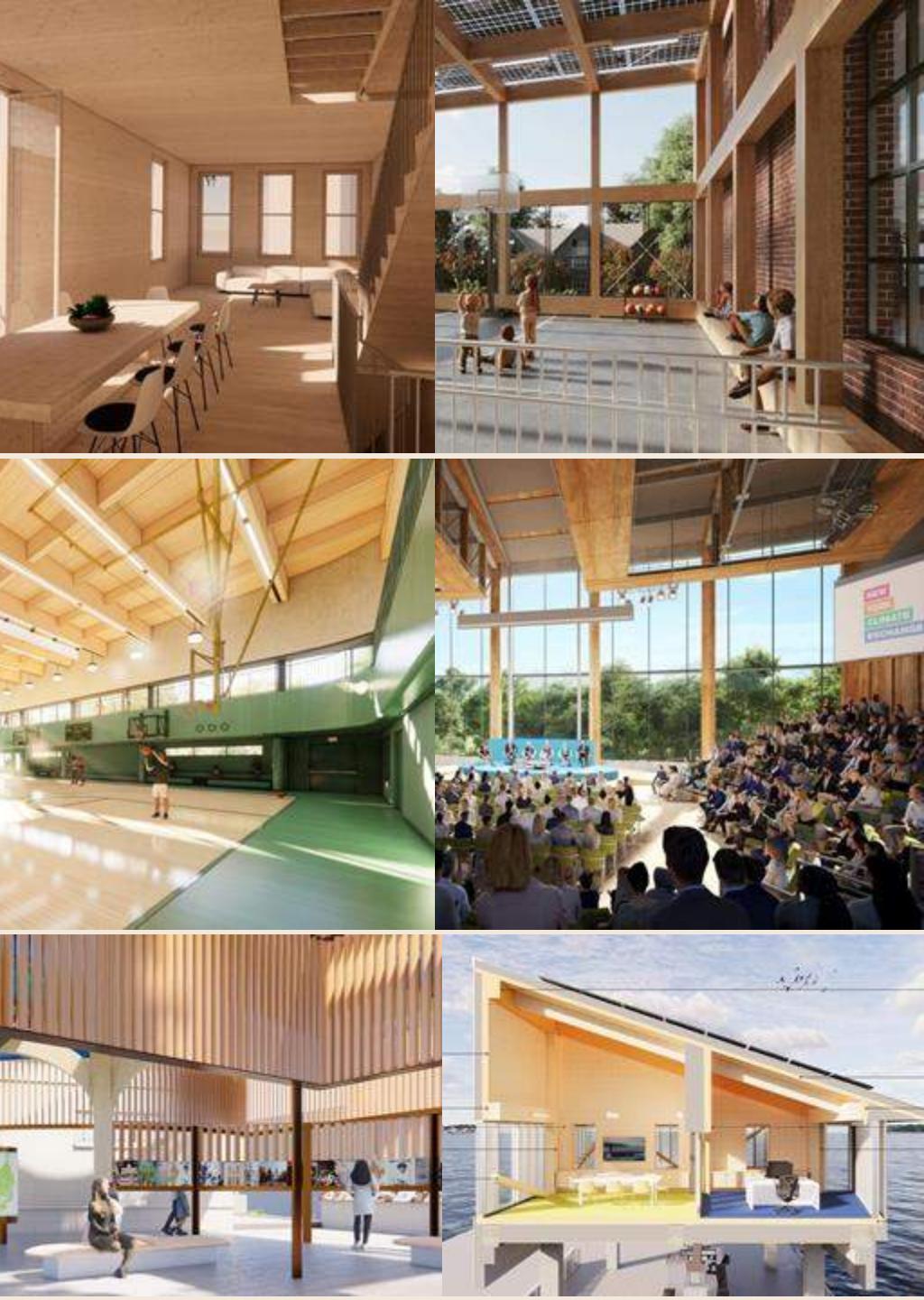
- Use of Structural CLT
- Concealed Spaces
- Lateral Systems and Structural Diaphragms
- Shafts
- Connections
- Penetrations

In June 2024, informed by the Studio, DOB published its first-ever Bulletin on mass timber—spurring conversation on mass timber code in practice

Current code revision process ongoing, via which DOB is pursuing potential code modifications

STUDIO COHORT 2 AT A GLANCE

8 active project teams across 5 NYC boroughs.


Represents over **800,000 square feet** of proposed mass timber development.

Mix of **public, residential, institutional, and community buildings**—from libraries and schools to affordable housing and civic pavilions.

Nearly **50%** of projects are publicly sponsored or community-serving, including parks, rec centers, and park pavilions.

Several projects are located in **environmental justice or under-resourced neighborhoods**.

Includes both **ground-up construction and adaptive reuse/addition projects**.

STUDIO PROJECTS

Walter Gladwin Recreation Center / Tremont, Bronx

Public project to construct a new mass timber recreation facility, bringing the Tremont neighborhood fitness amenities and community programming inclusive and accessible to all ages.

Stapleton Residential Development / Stapleton, Staten Island

EDC's first mass timber project, which will be the largest mass timber residential development in NYC. Artimus and Phoenix Realty Group will build 500+ mixed-income housing units, 25% of which will be affordable.

STUDIO PROJECTS

Brooklyn Public Library, New Lots / East New York, Brooklyn

Public project to replace the existing branch with a new library intending to use mass timber construction. The facility will include an educational and communal program to host classes, gatherings, and events.

New York Climate Exchange / Governors Island, New York

Largest mass timber commercial project in NYC on Governors Island – totaling more than 140,000 SF – to house its educational, research, and workforce development programming.

MASS TIMBER STUDIO

with

NYC / EDC

SUSAN JONES, FAIA
atelierjones llc
MASS TIMBER + | BOSTON, MA
30 OCTOBER 2025

atelierjones, llc

1501 East Madison Street
Suite 250
Seattle, Washington 98122
T: 206.624.9966
www.atelierjones.com

atelierjones

mass timber work

2010-2025

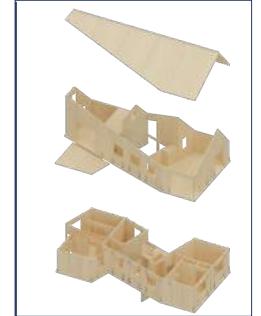
CLTHOUSE,
SEATTLE, WA
2010-2015

CLCHURCH,
BELLEVUE, WA
2013-2016

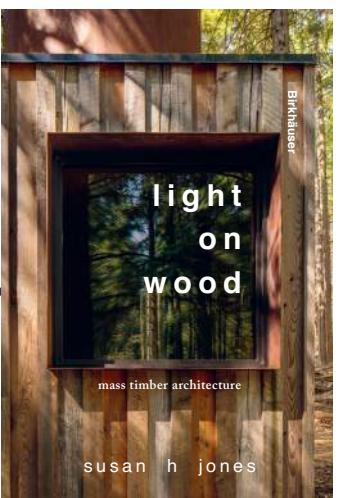
MASS TIMBER MODULAR
SCHOOLS, WASHINGTON
STATE LEGISLATIVE GRANT
2016-2017

AIA RESEARCH AWARD
TALL TIMBER CODES
2016-2019

HEARTWOOD
SEATTLE, WA
FIRST TYPE-IV-C BUILDING
2019-2023


SIERRA HOUSES,
GREENVILLE, CA
FIRE-HARDENED MODULAR
MASS TIMBER
2021-2023

CLT HOUSE,
KENMORE, WA
2022-2025


ROUNDHOUSE,
GREENVILLE, CA
2023-2025

CLT HOUSE
SHORELINE WA
2023-2025

VENICE
BIENNALE
2025

DESIGN
2010

2013

2016

2018

2019

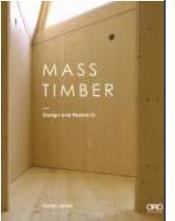
2020

2023

2025

RESEARCH

UNIVERSITY OF
WASHINGTON MASS
TIMBER STUDIOS
2013-2016



ICC TALL WOOD
BUILDING CODE
COMMITTEE
2016-2019

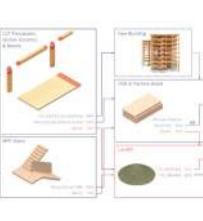
FIRE TESTS & RESEARCH,
ATF, WASHINGTON, DC
2017

MASS TIMBER
| DESIGN AND
RESEARCH, BY
SUSAN JONES
2018

TESTIFYING ICC NATIONAL
CODE HEARINGS
2018

2021 IBC ADOPTED
2019

FIRE TESTS &
RESEARCH,
RESEARCH INSTITUTE
OF SWEDEN
2020


WHOLE BUILDING LCA GRANT,
THE NATURE CONSERVANCY, UW,
FOREST PRODUCTS LAB
2018-2021

ICC G-147 PASSED,
100% EXPOSED
CEILINGS, TYPE IV-B
2022 + 2025

HEARTWOOD LCA
WITH END OF LIFE,
NET NEGATIVE GWP,
UNIVERSITY OF
WASHINGTON
2024

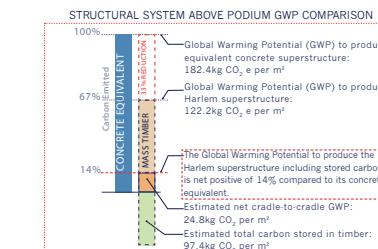
THERMALLY
MODIFIED CLT
DOD/UW/WSU/CRTC
2025

atelierjones, Inc

1501 East Madison Street
Suite 250
Seattle, Washington 98122
T: 206.624.9966
www.atelierjones.com

MASS TIMBER STUDIO COMPONENTS

PROJECT IN NEW YORK CITY
REAL PROJECT | MASS TIMBER | ANY PHASE


TEAM IN NEW YORK CITY
TEAMING ACCEPTABLE

MASS TIMBER CONSULTING
NYC DOB/WOODWORKS

COST ESTIMATE
COLLABORATION WITH CONTRACTOR AND
MASS TIMBER SUPPLIER

LIFE CYCLE ASSESSMENT
OUTCOMES PER NYC TEMPLATE

VERTICALLY INTEGRATED TEAM

DEVELOPER	Magna & York
DESIGN ARCHITECT	atelierjones, llc
ARCHITECT OF RECORD	Sage and Coombe Architects
STRUCTURAL ENGINEER	DCI Engineers
GENERAL CONTRACTOR	Swinerton
MASS TIMBER FABRICATION	Timberlab
LIFE CYCLE ANALYSIS	DCI Engineers
ACOUSTICAL CONSULTANT	Pilteq Inc.

MICHAEL DWYER
Founder & CEO | Magna & York

SUSAN JONES, FAIA
Principal Architect | atelierjones

PETER COOMBE
Founder | Sage and Coombe Architects

ADAM JONGEWARD, PE SE
Structural Engineer | DCI Engineers

ANDREW PEARL
Vice President | Swinerton

TANYA LUTHI, PE
Director of Engineering | Timberlab

PROJECT DESCRIPTION

LOCATION 15-21 W 124th Street, New York, NY 10027

OWNER Magna & York

PROGRAM & USE Residential 35 Unit Apartment Building

HEIGHT 7 story | 75'

AREA 49,291 SF

PHASE Design Development 50% completed

**CURRENT
STRUCTURAL SYSTEM** Concrete

**PROPOSED
STRUCTURAL SYSTEM** Cross-laminated Timber floors with Steel Stud Bearing Walls and Glulam Post-and-Beams

15-21 West 124th Street is a 7-story apartment building located in the heart of Harlem on a 10,000 square foot south-facing site overlooking Marcus Garvey Park. The project is approximately 50,000 GSF and includes 35 two- and three-bedroom units with ample amenity space. The site is directly adjacent to the Harlem branch of the New York Public Library to the east. The site is well-served with transit less than a 5-minute walk from multiple subway lines and adjacent to the 125th Street commercial core.

Early design emphasis was placed on ample green space, maximum light penetration, and healthful interiors. However, the owner's Swiss heritage and strong desire to create a meaningful, lower-carbon project pushed him to transition away from a concrete design and seek out a new AEC team to embrace and execute a legacy Mass Timber building that will shape Harlem innovatively, sequestering carbon for generations.

Demolition and clearing of the site is complete and the project is in Design Development and the project has received a parking waiver from the NY Planning Commission. The MTS grant tested the integration of the Mass Timber superstructure to the previous concrete design and found an estimated potential cost reduction of roughly \$4.7million.

SITE

MT. MORRIS PLAZA SENIOR
HOUSING

GREATER CALVARY
BAPTIST CHURCH

41 W 124th St

HARLEM
VILLAGE
ACADEMIES
HIGH

31 W 124th St

23 W 124th St

15 W 124th St

HARLEM LIBRARY

2002 5th Ave

5th Ave

LOWER CARBON PROGRAM

DECARBONIZING THE BUILDING PROGRAM

LOWER CARBON PROGRAM, BELOW GRADE STRUCTURE

Eliminate 10' Concrete Sub-Cellar Parking Level, Concrete Drive Entry + Steel Parking Lift. Zoning Amendment with CPC/City Council Process eliminated 17 car parking stalls

AMENITIES

Multi-Story Wooden Forum + Lobby Co-Working + Gym/Hoops + Dining + Rooftop Garden + Landscaped Gardens + Bike Parking + Storage Units

NEW GARDEN UNITS

Two new at-grade rear units facing garden, 35 units total

AREA REDUCED

Approx. 5,200 SF below grade concrete/excavation

NEIGHBORHOOD IMPACT

Quieter, less invasive construction, shorter duration, and a lower carbon, greener footprint — the first of its kind for Harlem.

LOWER CARBON STRUCTURAL SYSTEM

Cross-laminated Timber floors with Steel Stud Bearing Walls and Glulam Post-and-Beams

LOWER CARBON ACOUSTICAL ASSEMBLY

Recycled GWB Acoustical panels Genie-Board, substituted for Gypcrete, non-combustible floor topping

VIEW UP ENTRY STAIR TOWARDS W. 124th FROM GARDEN COURTYARD

CELLAR LEVEL PLAN

DECARBONIZING THE BUILDING PROGRAM

PARKING

Eliminate 10' Concrete Sub-Cellar Parking Level, Concrete Drive Entry + Steel Parking Lift. Zoning Amendment currently proceeding through CPC/City Council Process to eliminate 17 car parking stalls.

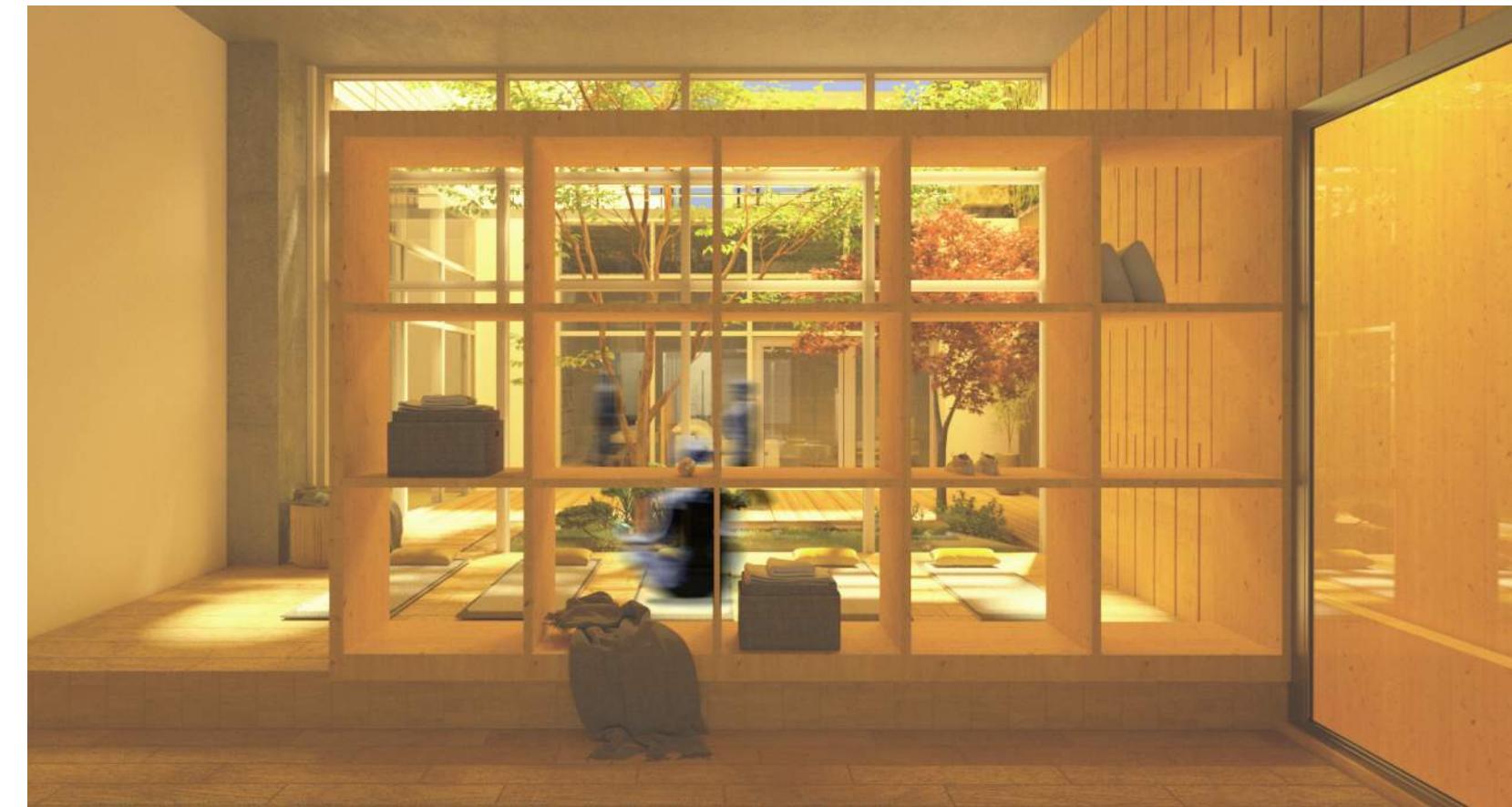
AMENITIES

Multi-Story Wooden Forum + Lobby Co-Working + Gym/Hoops + Dining + Rooftop Garden + Landscaped Gardens + Bike Parking + Storage Units

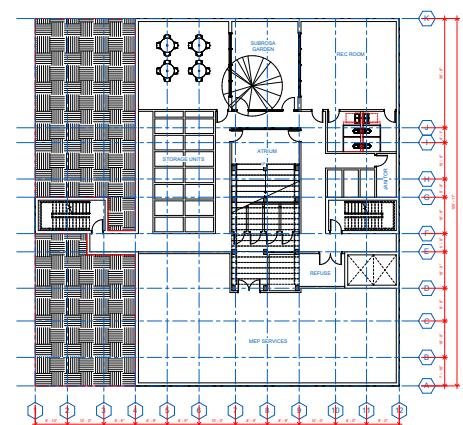
NEW GARDEN UNITS

Two at-grade rear units facing garden

AREA REDUCED


Approx. 5,200 SF below grade concrete/excavation

NEIGHBORHOOD IMPACT


Quieter, less invasive construction, shorter duration, and a lower carbon, greener footprint — the first of its kind for Harlem.

LOWER CARBON STRUCTURAL SYSTEM

Cross-laminated Timber floors with Steel Stud Bearing Walls and Glulam Post-and-Beams

YOGA ROOM IN GARDEN COURTYARD

GROUND LEVEL PLAN

DECARBONIZING THE BUILDING PROGRAM

PARKING

Eliminate 10' Concrete Sub-Cellar Parking Level, Concrete Drive Entry + Steel Parking Lift. Zoning Amendment currently proceeding through CPC/City Council Process to eliminate 17 car parking stalls.

AMENITIES

Multi-Story Wooden Forum + Lobby Co-Working + Gym/Hoops + Dining + Rooftop Garden + Landscaped Gardens + Bike Parking + Storage Units

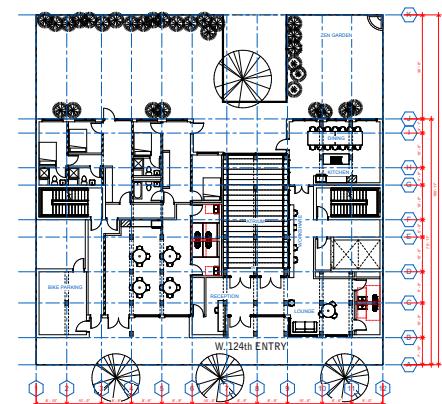
NEW GARDEN UNITS

Two new at-grade rear units facing garden

AREA REDUCED

Approx. 5,200 SF below grade concrete/excavation

NEIGHBORHOOD IMPACT


Quieter, less invasive construction, shorter duration, and a lower carbon, greener footprint — the first of its kind for Harlem.

LOWER CARBON STRUCTURAL SYSTEM

Cross-laminated Timber floors with Steel Stud Bearing Walls and Glulam Post-and-Beams on Ground and Cellar Level lobby/amenity spaces, Typical Residential Floors.

W. 124th ENTRY

COST ESTIMATES

EVOLVING CONCRETE TO MASS TIMBER

COMPARATIVE COST ESTIMATES

15-21 W. 124th Street project's 2022 cost estimate was approx. \$28 M, using a concrete structure, and including below grade parking. The MTS Studio allowed us to:

- redesign based on eliminate the below grade parking
- reduce the overall square footage
- add two more units
- substitute mass timber for concrete structure where efficient and exposed

As part of the NYC/EDC Mass Timber Studio process, the NYC teams of Swinerton Construction and Timberlab led a full systems construction cost estimating process in June 2024, resulting in a \$27.7M cost estimate for the 43,631 SF building. Applying industry standard escalation to the existing 2022 estimate to Q2/2024, the existing building came in at \$32.5M resulting in a \$4.7M savings, in large part due to the elimination of the parking garage. The Mass Timber had a negligible cost impact.

CONCRETE BUILDING Q2 2024 ESCALATION, INC. PARKING

\$32,400,000

MASS TIMBER BUILDING JUNE 26, 2024

\$27,686,000

MAGNA & YORK
Harlem Multi-Family Apartments
Construction Services (Revised Estimate & Qualifications)

June 26, 2024

Mass Timber Studio Harlem

Estimate Version: Conceptual Estimate V1.0

Owner: Magna & York

Architect: atelierjones, LLC

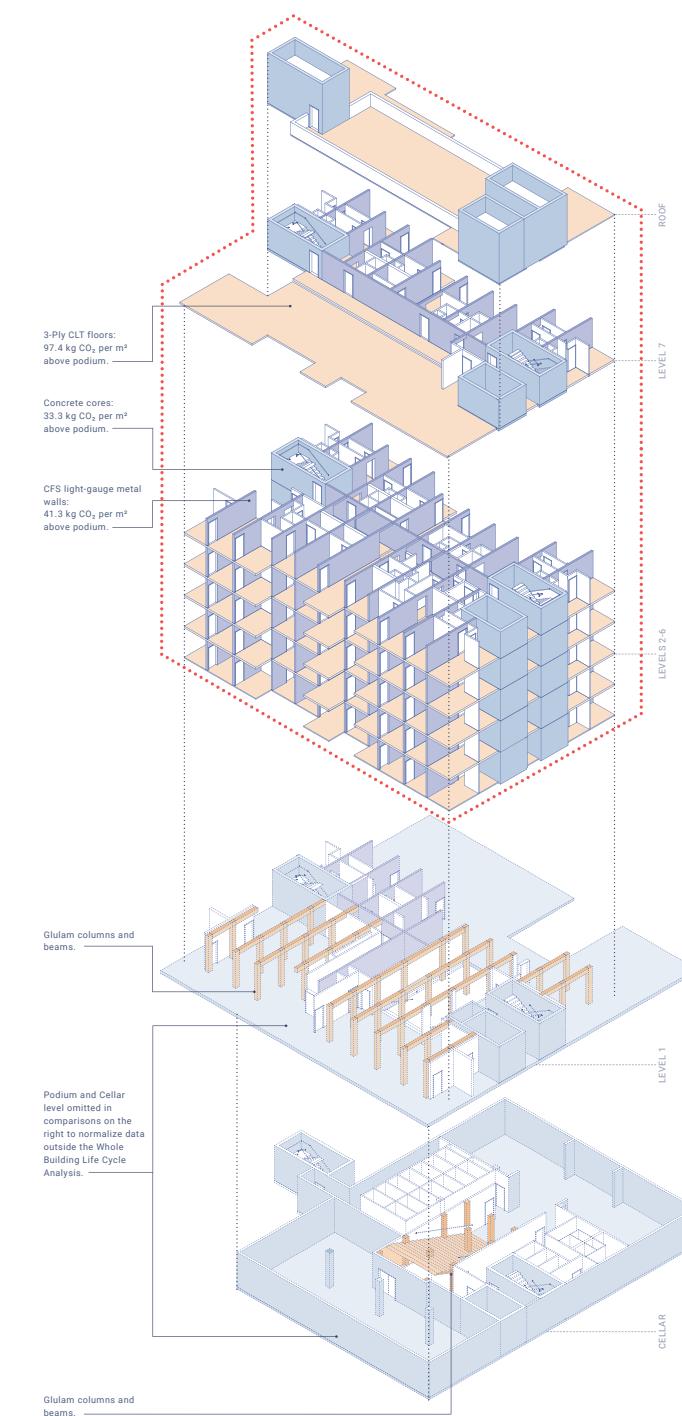
June 26, 2024

Description	15-21 W 124th St, Harlem - DD Estimate Escalated to Q2 2024, Parking Scopes Removed			Mass Timber Studio Harlem - Conceptual Estimate V1.0				Variance			
	Uniformat Level 2 > Masterformat Level 1		46,686 gsf Amount	Cost/gsf	43,631 gsf Amount		Cost/gsf	Quantity	Unit Price	(3,055) gsf Amount	Cost/gsf
	A10 Foundations	\$ 2,408,627	\$ 51.59	\$ 1,560,332	\$ 35.76				\$ (848,295)	\$ (15.83)	
A40 Slabs-On-Grade	\$ 565,040	\$ 12.10	\$ 172,104	\$ 3.94					\$ (392,936)	\$ (8.16)	
B10 Superstructure	\$ 3,177,249	\$ 68.06	\$ 3,456,935	\$ 79.23					\$ 279,686	\$ 11.18	
B20 Exterior Vertical Enclosures (Walls)	\$ 3,654,050	\$ 78.27	\$ 2,812,933	\$ 64.47					\$ (841,117)	\$ (13.80)	
B30 Exterior Horizontal Enclosures (Roof)	\$ 1,170,033	\$ 25.06	\$ 848,093	\$ 19.44					\$ (321,940)	\$ (5.62)	
C10 Interior Construction	\$ 2,659,807	\$ 56.97	\$ 1,603,872	\$ 36.76					\$ (1,055,935)	\$ (20.21)	
C20 Interior Finishes	\$ 2,229,953	\$ 47.76	\$ 1,684,145	\$ 38.60					\$ (545,808)	\$ (9.17)	
D10 Conveying	\$ 787,392	\$ 16.87	\$ 752,000	\$ 17.24					\$ (35,392)	\$ 0.37	
D20 Plumbing	\$ 1,717,361	\$ 36.79	\$ 1,510,100	\$ 34.61					\$ (207,261)	\$ (2.17)	
D30 Heating, Ventilation, and Air Conditioning (HVAC)	\$ 1,939,816	\$ 41.55	\$ 1,723,680	\$ 39.51					\$ (216,136)	\$ (2.04)	
D40 Fire Protection	\$ 667,684	\$ 14.30	\$ 425,000	\$ 9.74					\$ (242,684)	\$ (4.56)	
D50 Electrical	\$ 1,666,127	\$ 35.69	\$ 1,735,800	\$ 39.78					\$ 69,673	\$ 4.10	
D60 Communications	\$ 316,494	\$ 6.78	\$ 334,000	\$ 7.66					\$ 17,506	\$ 0.88	
D70 Electronic Safety and Security	\$ 187,046	\$ 4.01	\$ 162,539	\$ 3.73					\$ (24,507)	\$ (0.28)	
E10 Equipment	\$ 427,222	\$ 9.15	\$ 286,625	\$ 6.57					\$ (140,597)	\$ (2.58)	
F30 Demolition											
G10 Site Preparation	\$ 502,523	\$ 10.76	\$ 475,986	\$ 10.91					\$ (26,537)	\$ 0.15	
G20 Site Improvements	\$ 49,827	\$ 1.07	\$ 75,000	\$ 1.72					\$ 25,173	\$ 0.65	
Z10 General Requirements	\$ 854,901	\$ 18.31	\$ 1,369,998	\$ 31.40					\$ 515,097	\$ 13.09	
Direct Cost Subtotal	\$ 24,981,152	\$ 535.09	\$ 20,989,143	\$ 481.06					\$ (3,992,009)	\$ (54.03)	
Make Ready Staffing	\$ 161,730	\$ 3.46	-	-					\$ (161,730)	\$ (3.46)	
General Conditions	\$ 2,004,382	\$ 42.93	\$ 2,223,202	\$ 50.95					\$ 218,820	\$ 8.02	
General Requirements	\$ 663,455	\$ 14.21	\$ 601,725	\$ 13.79					\$ (61,730)	\$ (0.42)	
Preconstruction Services	-	-	\$ 163,050	\$ 3.74					\$ 163,050	\$ 3.74	
General Conditions & Requirements	\$ 27,810,719	\$ 595.70	\$ 23,977,120	\$ 549.54					\$ (3,833,599)	\$ (46.15)	
Estimating Contingency	\$ 1,762,351	\$ 37.75	\$ 1,049,457	\$ 24.05	- %	- %	- %	- %	\$ (712,894)	\$ (13.70)	
Adjustment for Eliminated Parking	\$ (995,735)	\$ (21.33)	-	-	-	-	-	-	\$ 995,735	\$ 21.33	
General Contractor Contingency	\$ 1,287,872	\$ 27.59	\$ 1,104,610	\$ 25.32	- %	- %	- %	- %	\$ (183,262)	\$ (2.27)	
Contingencies	\$ 29,865,206	\$ 639.70	\$ 26,131,187	\$ 598.91					\$ (3,734,019)	\$ (40.79)	
General Liability Insurance	\$ 1,233,646	\$ 26.42	-	-	-	-	-	-	\$ (1,233,646)	-	
OCIP Gap Insurance	-	-	\$ 276,152	\$ 6.33					\$ 276,152	-	
Subcontractor Default Insurance	-	-	\$ 241,375	\$ 5.53	1.15 %	- %	- %	- %	\$ 241,375	\$ 5.53	
Builders Risk	-	-	-	-	- %	- %	- %	- %	-	-	
Performance & Payment Bond (By Owner)	-	-	-	-	- %	- %	- %	- %	-	-	
Insurances	\$ 31,098,852	\$ 666.13	\$ 26,648,714	\$ 610.77					\$ (4,450,137)	\$ (55.35)	
Contractor Overhead and Profit	\$ 1,287,872	\$ 27.59	\$ 966,534	\$ 22.15	(0.50) %	- %	- %	- %	\$ (321,338)	\$ (5.43)	
Taxes	-	-	-	-	-	-	-	-	-	-	
Fee & Taxes	\$ 32,386,724	\$ 693.71	\$ 27,615,248	\$ 632.93					\$ (4,771,476)	\$ (60.79)	
GRAND TOTAL	\$ 32,386,724	\$ 693.71	\$ 27,615,248	\$ 632.93					\$ (4,771,476)	\$ (60.79)	

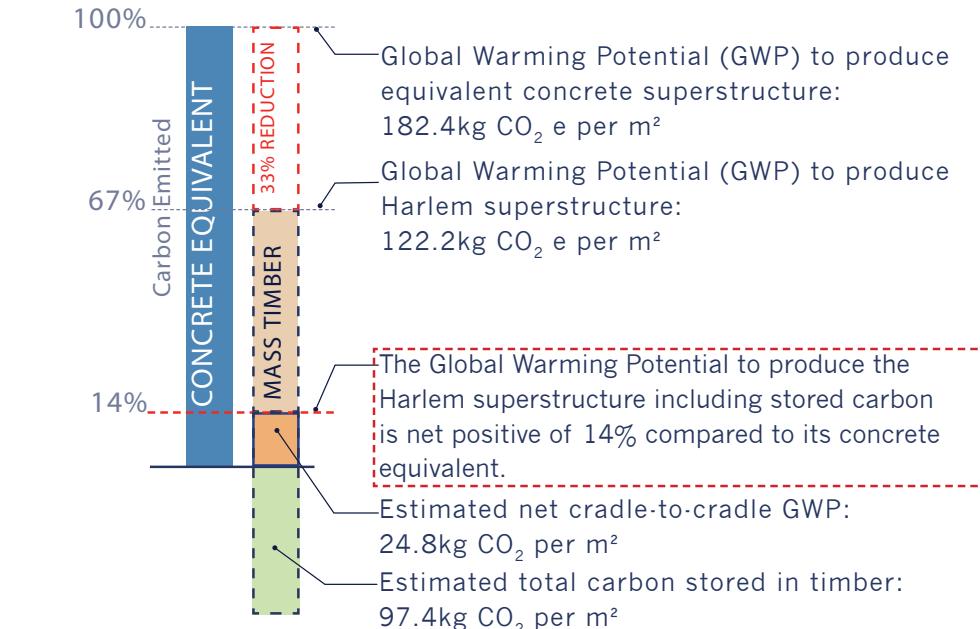
COMPARATIVE LCA RESULTS

LOWER CARBON SUPERSTRUCTURE

The NYC/EDC Mass Timber Studio required that the team produce at least one comparative LCA between the mass timber structure and a conventionally constructed equivalent structure. Leading the modeling process, using the existing DD-level design for the building, as the comparative structure, atelierjones created two equivalent structures, one in wood, one in concrete. with support from our industry partner, Pliteq Engineering, DCI Engineers led three LCA analyses using the software program One-Click on three different scenarios, one, including the entire Whole Building LCA, including the Building Enclosure, the second, Structure only, including the below grade foundation and parking structure, and the third, including only the structure, above the podium level.


Following the LCA reporting templates supplied by NYC/EDC, the following results were achieved:

33%


86%

Lower Upfront Carbon Mass Timber Superstructure
vs. Concrete Equivalent Superstructure above the
podium

Lower Carbon Mass Timber Superstructure vs.
Concrete Equivalent Superstructure above the
podium, including Stored Carbon in the Mass Timber

STRUCTURAL SYSTEM ABOVE PODIUM GWP COMPARISON

LCA/DESIGN IMPACTS: DRY ASSEMBLIES

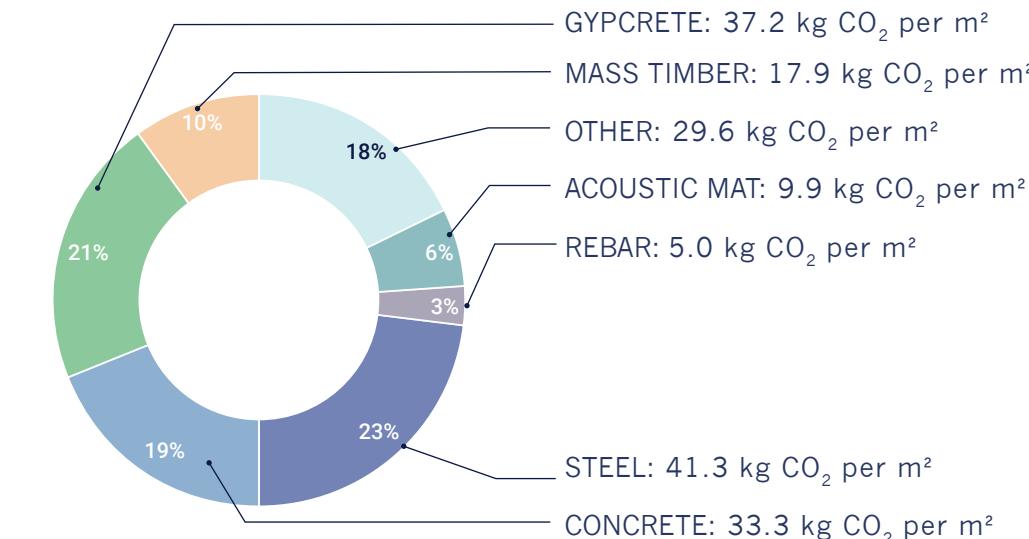
FLOOR ACOUSTIC ASSEMBLY OPTION

In addition to the comparative analysis of a concrete building to mass timber, the team further studied the impacts of using an alternative, dry-assembly in-lieu of traditional gypcrete topping. The dry-assembly material used was GenieBoard by Pliteq, a gypsum fiberboard subfloor panel made from 90% recycled content.

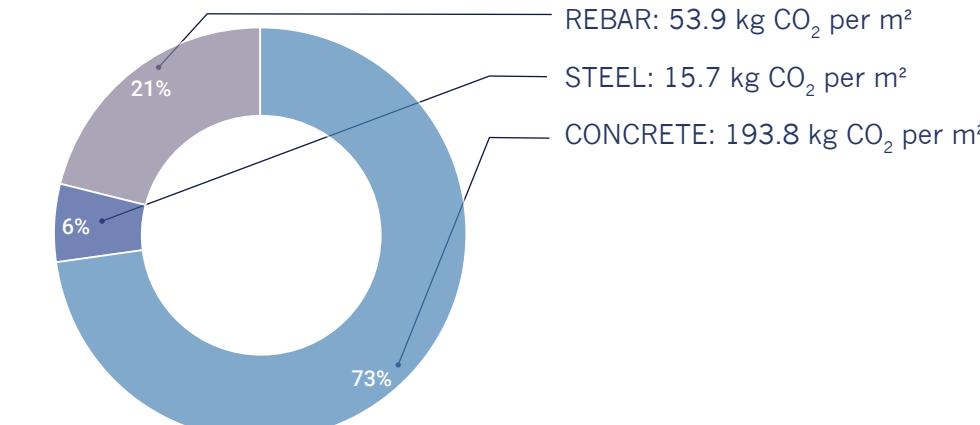
9%

3-Ply CLT Model,
projected GWP Reduction
for GenieBoard vs. Gypcrete
(970,150.6 kg CO₂ per m²).

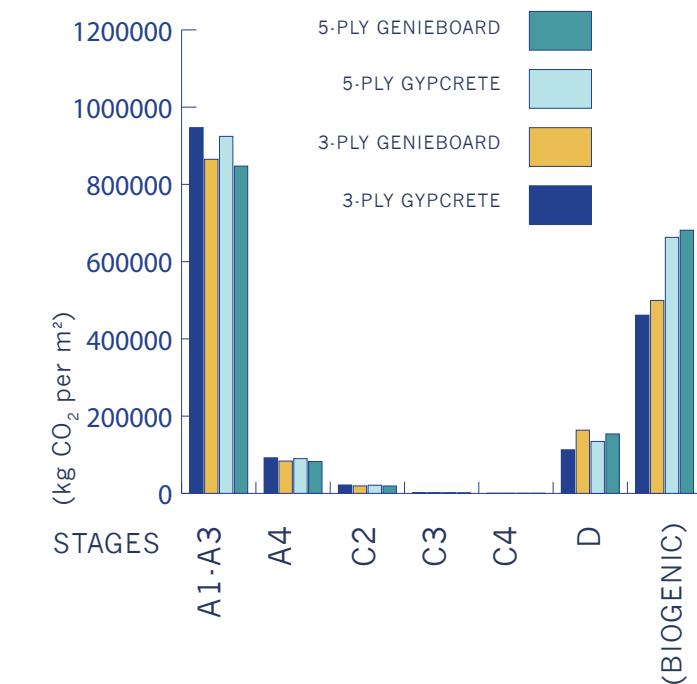
This comparative study was carried further by also studying the assemblies in varying structure of 3-Ply to 5-Ply CLT, as the lesser weight of the dry-assembly reduced the structural impact by roughly 10 psf at each floor.


11%

5-Ply CLT Model showed a 2.5% reduction
(1,037443.1 kg CO₂ per m²).
11% reduction for Genieboard vs. Gypcrete
(950,802.8 kg CO₂ per m²)


Assumes a baseline value of 1,063,220.7 kg CO₂ per m² (for structure only above podium and not including comparable enclosure) in the 3-Ply design.

STRUCTURAL SYSTEM ABOVE PODIUM RESOURCE TYPE COMPARISON


MASS TIMBER BUILDING (3-PLY GYPCRETE)

CONCRETE BUILDING

MASS TIMBER ACOUSTIC/NON-COMBUSTIBLE TOPPING ALTERNATIVE LCA COMPARISONS

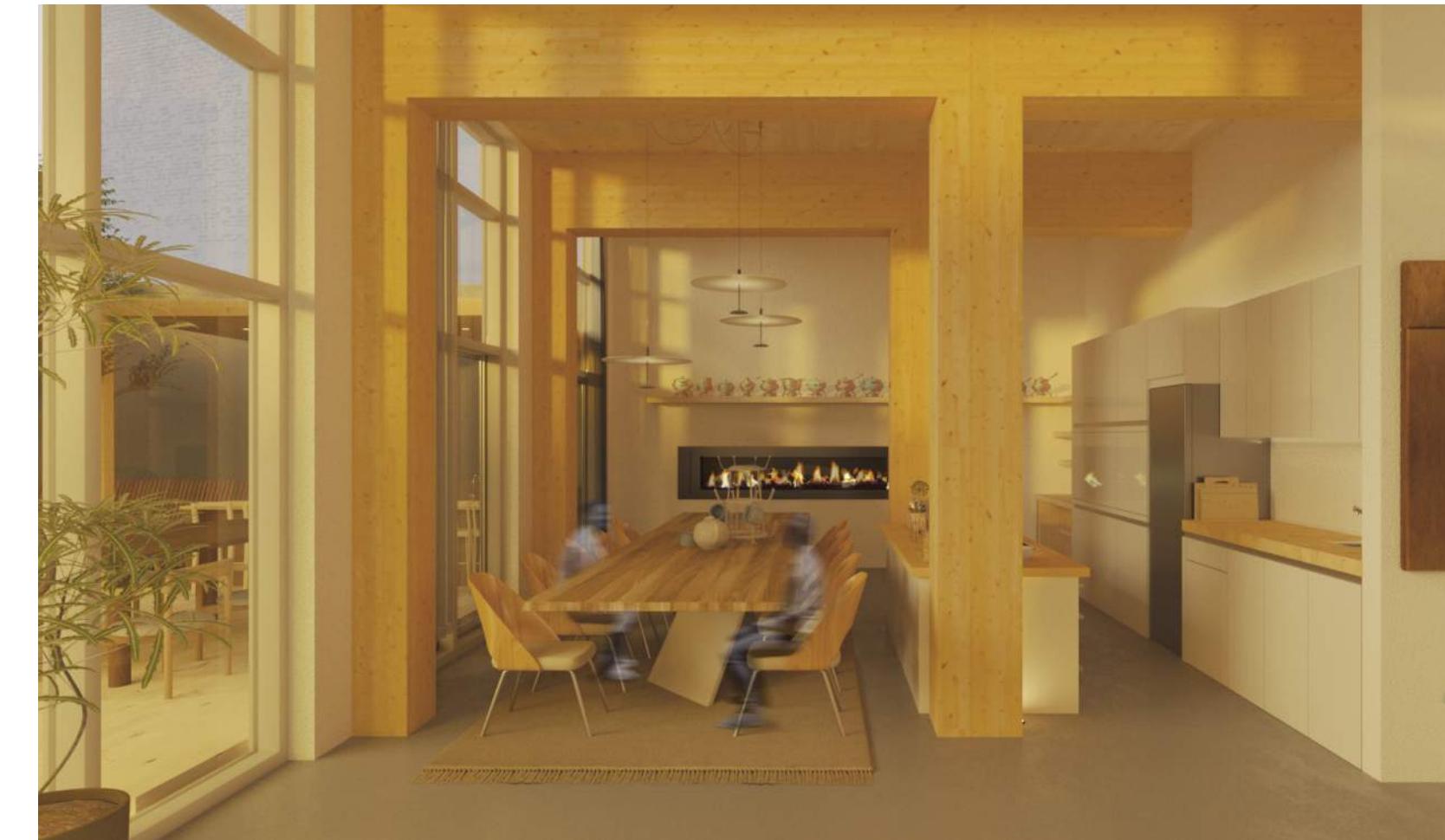
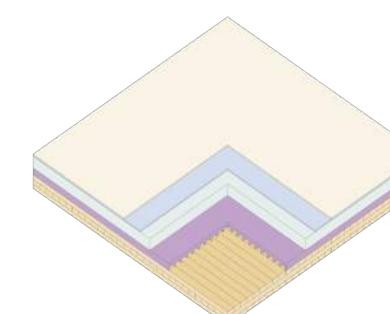
LOWER CARBON STRUCTURE

HYBRID: MASS TIMBER + COLD FORMED STEEL (CFS) BEARING WALLS

HYBRID SYSTEM | OPTIMIZING UNITS

Evolving both the structural system and the units to change in tandem with each other allowed both to work without having to flex too far as to break. Taking cues from the inherited design, that interior spaces wanted to be spaced at a rhythm of 8'-10' and that units were roughly 20'-25' deep, the team explored using a Steel Stud Bearing Wall structural system, thereby saving not only cost for the project but also critical square footage in the plan and section.

Additionally, this choice gave the flexibility of allowing the units and grids to shift off-axis where or when necessary, more easily than would be in a post-and-beam scenario. Further flexibility was also available in that post-and-beams could be inserted to work in conjunction with adjacent bearing walls in areas that either required more open spans, or in areas where it was desirable to use more wood for aesthetics, such as in the lobby and atrium FORUM areas.



CFS FRAME
RESIDENTIAL
FLOORS

GLULAM POST
AND BEAM ENTRY/
AMENITY FLOORS

CLT +
LOWER CARBON
ACOUSTICAL ASSEMBLY

COMMUNAL KITCHEN LOOKING OUT TO COURTYARD

NYC DOB INPUT ON DRAFT 2024_004 TECHNICAL BULLETIN

-- **1+1 CONCEALED SPACES REGULATIONS**
REDUCE SOFFITS/CONCEALED SPACES
MEP/FLS EFFICIENCY +
EXPOSE MAXIMUM WOOD CEILINGS +

REDUCE USE OF GYPSUM WALL BOARD SOFFITS

The programming and grid redesign also reduced the soffit area as much as possible and condensed the required soffit area as close as possible to the central core and hallway of the building.

This approach reduced the impact of GWB on the LCA, as well as reduced the cost impact of NYC's current building code requirement of 1+1 protection methods for concealed spaces in mass timber.

-- **1 HR INTERIOR WALL REQUIREMENT**
NOT REQUIRED FOR IBC 2021/2024 CODES
BUT REQUIRED IN NYC DOB

-- **ALLOWABLE HEIGHTS FOR MASS TIMBER IN NYC**
NOT PER IBC 2021/2024 CODES

atelierjones llc

10th May, 2024

Keith Wen
Assistant Commissioner
Code and Zoning Interpretation
New York City Department of Buildings

RE: 2024-0xx Technical Bulletin Draft on Section BC 602.4

Mr. Wen,

Thank you for developing the referenced technical bulletin and allowing the opportunity to review and provide comments on NYC's approach to building code for Mass Timber. It is a pleasure and honor to be involved in such important innovation. Within this bulletin are two primary areas of concern that we would like to evolve further — Concealed Spaces and Interior Wall construction.

Many of our colleagues and friends in the industry have provided admirable feedback on the concealed space allowance and how NYC might best and appropriately adjust its code language as outlined in the bulletin to better align with existing IBC to promote and permit the continued growth of mass timber in NYC, and we echo their concerns and recommendations. However, of equal or greater concern for us is the limitations placed in the code on interior wall construction within the outlined Type IV for NYBC.

The requirement that all interior walls are to be 1-hr rated construction minimum when not constructed with allowable mass timber design per the outlined chapter of BC 2304.11.2.2 (reference section VII of the bulletin) is a stringent requirement that is divergent from the development of mass timber design as outlined in the current IBC cycle. This requirement seems to have arisen as a consequence of NYC not adopting the IBC changes which introduced the new building types of Type IV-A, -B, and -C such that the NYBC is now limited by referencing only the previous (and current) requirement that still states that Type IV Heavy Timber interior nonload-bearing walls and partitions must be of 1-hr rating.

In comparison, the 2021 and 2024 IBC allows interior nonload-bearing walls and partitions under Type IV-A, -B, and -C to be of mass timber construction or of 0-hr noncombustible material (where not otherwise provisioned in separate areas

1501 E. Madison Avenue
Suite 601
Seattle, WA 98122
www.atelierjones.com
206.624.9966 office
206.624.9957 fax

ISSUER: Keith L. Wen, R.A.
Assistant Commissioner
Code & Zoning Interpretation

PURPOSE: This Bulletin provides clarification to the specific requirements of Section BC 602.4 regarding mass timber construction.

SUBJECT(S): Solid wood, Glue-laminated timber (glu-lam), Structural composite lumber (SCL), Cross-laminated timber (CLT), Concealed spaces, Mass timber, Type IV-HT, Type IV, Heavy timber, interior walls and partitions

RELATED CODE SECTIONS & RESOURCES
2022 BC 602.4, 2022 BC 718, 2022 MC 602, 2021 IBC 602.4.4.3

I. BACKGROUND

The 2022 NYC Building Code allows the use of mass timber materials, including cross laminated timber (CLT) and structural composite lumber (SCL) to be categorized as Type IV construction, in addition to solid wood, glue-laminated timber, and heavy timber (HT), which have been allowed in previous NYC Building Codes. Mass timber construction is categorized as Type IV construction and can include the building elements described above or a combination of those elements.

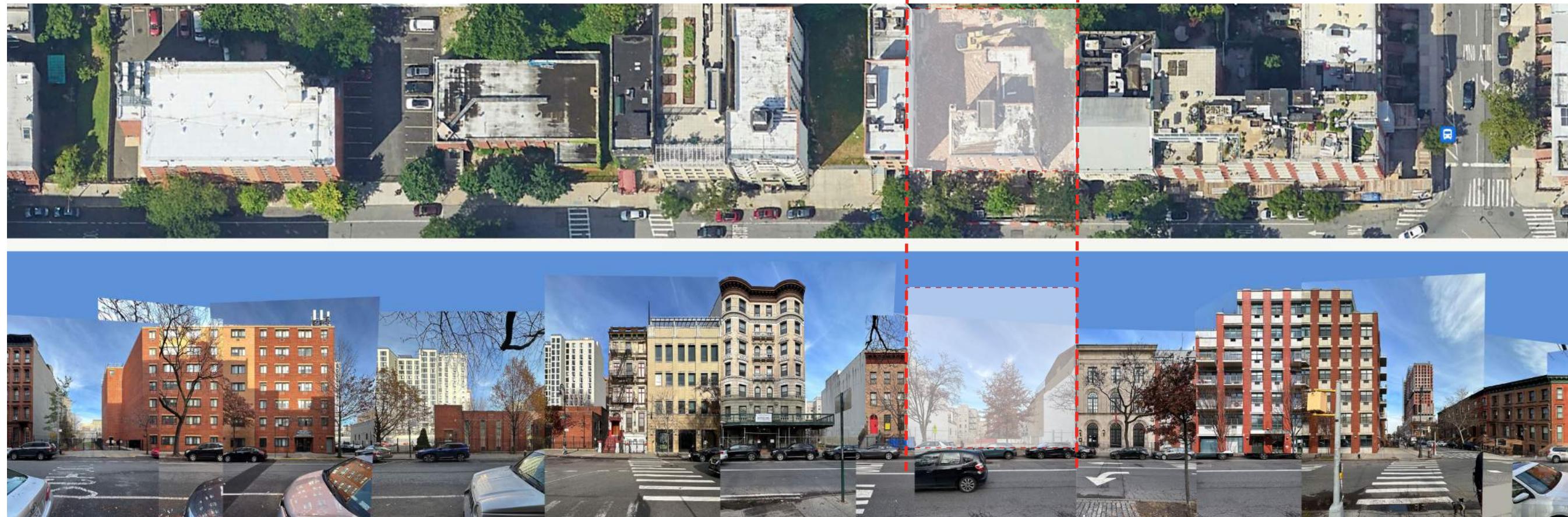
Section BC 602.4 outlines several conditions for Type IV construction. This bulletin provides clarification regarding the specific requirements of this section. Other methods of complying with Section BC 602.4 that are not addressed in the bulletin will be reviewed on a case-by-case basis through the Department's determination process.

II. MASS TIMBER MUST BE FILED AS TYPE IV CONSTRUCTION

The 2022 NYC Construction Codes include provisions that specifically address the unique characteristics of Type IV construction in New York City. The requirements are intended to provide a greater degree of safety in relation to relatively new materials and construction methods. These requirements include but are not limited to special inspections and construction site safety provisions. To ensure that the relevant provisions are applied, any building using mass timber elements must file the building as Type IV construction.

Mass timber buildings that are filed as other construction types will be subject to audits and may trigger the need to be re-filed as Type IV construction.

NOTE: Type IV construction projects that are professionally certified are subject to review by the Department.


III. CONCEALED SPACES IN TYPE IV CONSTRUCTION

Section BC 602.4 states, in part, as follows with emphasis added:

James S. Oddo, Commissioner

nyc.gov/buildings

NYC MTS IMPACT

MT. MORRIS PLAZA SENIOR
HOUSING

GREATER CALVARY
BAPTIST CHURCH

41 W 124th St

HARLEM
VILLAGE
ACADEMIES
HIGH

31 W 124th St

23 W 124th St

15 W 124th St

HARLEM LIBRARY

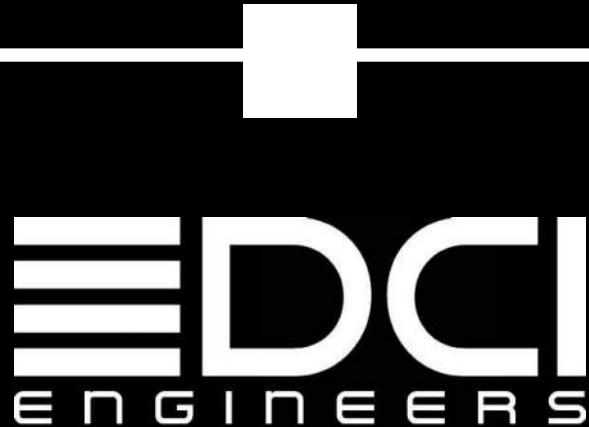
2002 5th Ave

5th Ave

MASS TIMBER STUDIO

with

NYC / EDC

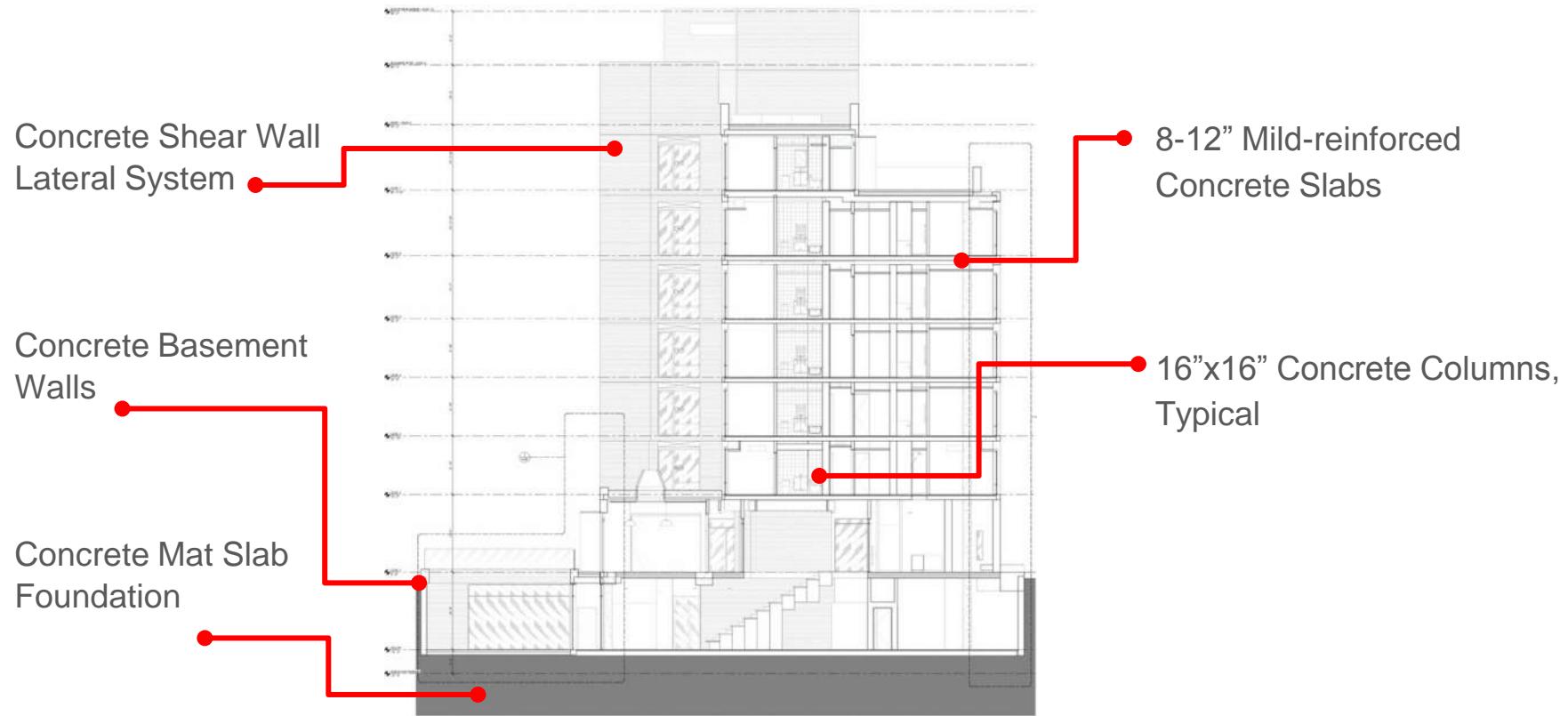


SUSAN JONES, FAIA
atelierjones llc

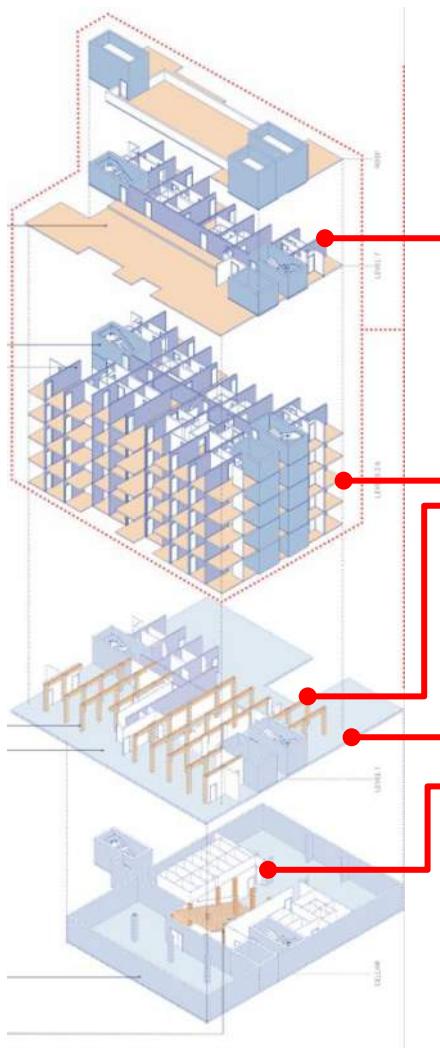
MASS TIMBER + | BOSTON, MA
30 OCTOBER 2025

CONTACT: info@atelierjones.com

atelierjones, llc
1501 East Madison Street
Suite 250
Seattle, Washington 98122
T: 206.624.9966
www.atelierjones.com


NEW YORK CITY MASS TIMBER STUDIO:
LCA CASE STUDY FOR UTILIZING MASS TIMBER IN HARLEM

ARIZONA DABRUSIN, PE, LEED AP BD+C
DCI ENGINEERS


CONCRETE VS. MASS TIMBER DESIGN COMPARISON

ALL-CONCRETE SCENARIO

MASS TIMBER SCENARIO

3-ply CLT w/ Gypcrete Topping,
6" Cold-Formed Steel Stud Walls,
Typical at Residential Levels

Glulam Beams and Columns
at Level 2, Atrium

12" Mild-reinforced Concrete Slab
at Ground Level

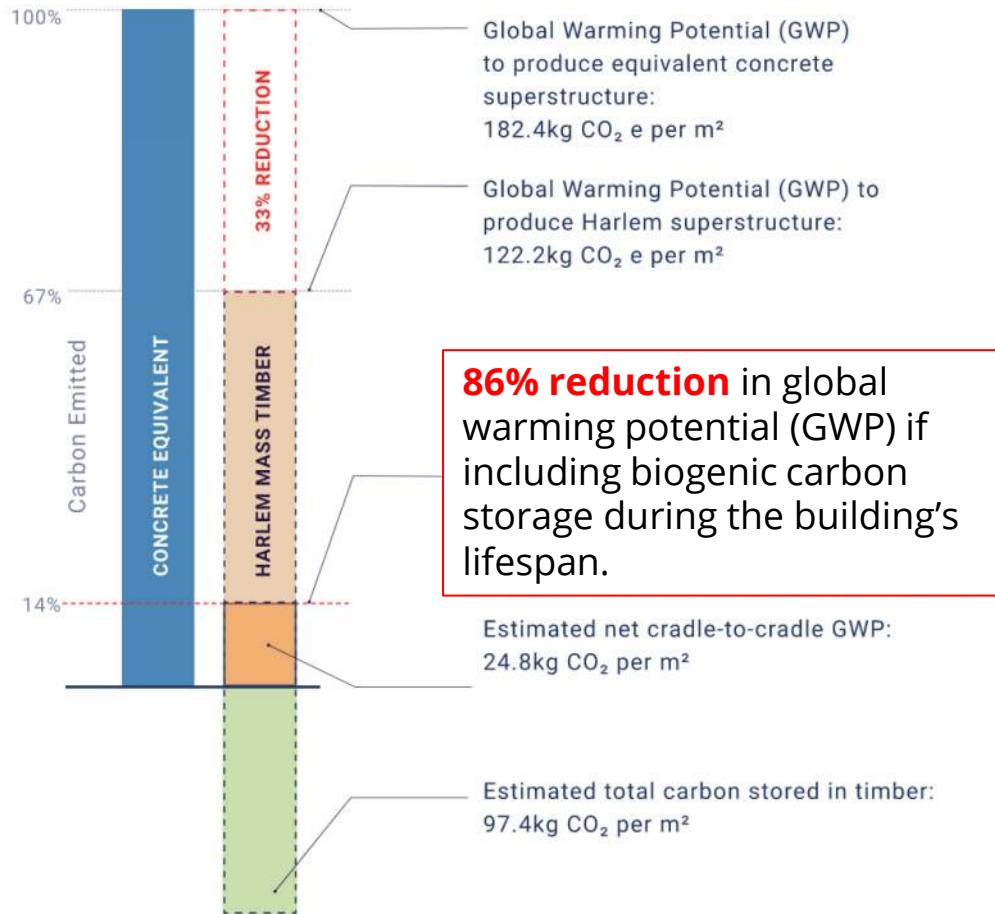
18"x18" Concrete Columns,
Only Basement Level

LCA METHODOLOGY

LCA info required by NY Mass Timber Studio:

- Structure and enclosure reported separately
- EPDs based off industry averages set by 2023 CLF North American Baseline Guide, except Pliteq product specific
- 60-year building lifespan

One Click LCA software


Biogenic carbon reported separately and only considered as benefit during building lifespan

LCA RESULTS

33% reduction in global warming potential (GWP) from Mass Timber Hybrid design over the Concrete equivalent, for superstructure and enclosure above podium.

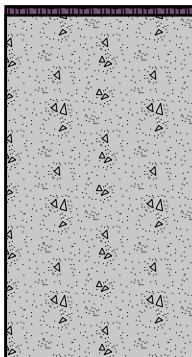
28% reduction for whole building, including the podium/basement.

FLOOR ASSEMBLY COMPARISON

Study began with **8 inch concrete slab vs. 3-ply CLT**
topped with 3" gypcrete

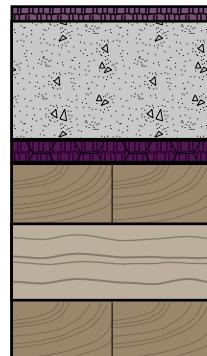
Expanded the study to include **5-ply CLT** topped with 2"
gypcrete, and **genieboard** in lieu of gypcrete

Goal was to understand impacts of **dry vs. wet assembly**
on emissions, acoustics, and fire code

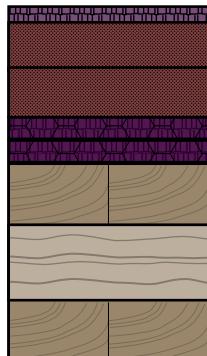

AN ALL WOOD JOINT

Heartwood Building

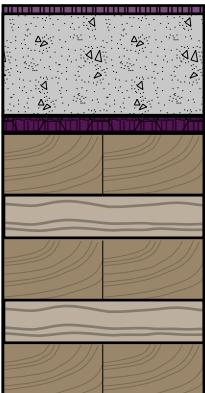
Seattle, WA


Photography by Timberlab
New York City Mass Timber Studio

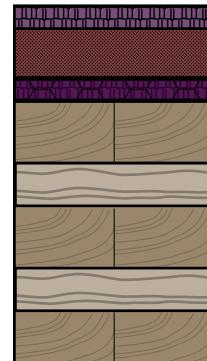
CONCRETE:
8 5/64"
THICKNESS


GENIEMAT RST02
8" CONCRETE

**3-PLY
GYPCRETE:**
8 5/16"
THICKNESS


GENIEMAT RST05
3" GYPCRETE
GENIEMAT FF25
3-PLY CLT

**3-PLY
GENIEBOARD:**
8 5/16"
THICKNESS


GENIEMAT RST05
(2-LAYER)
GENIEBOARD 302
(2-LAYER)
GENIEMAT FF25
3-PLY CLT

**5-PLY
GYPCRETE:**
9 5/16"
THICKNESS

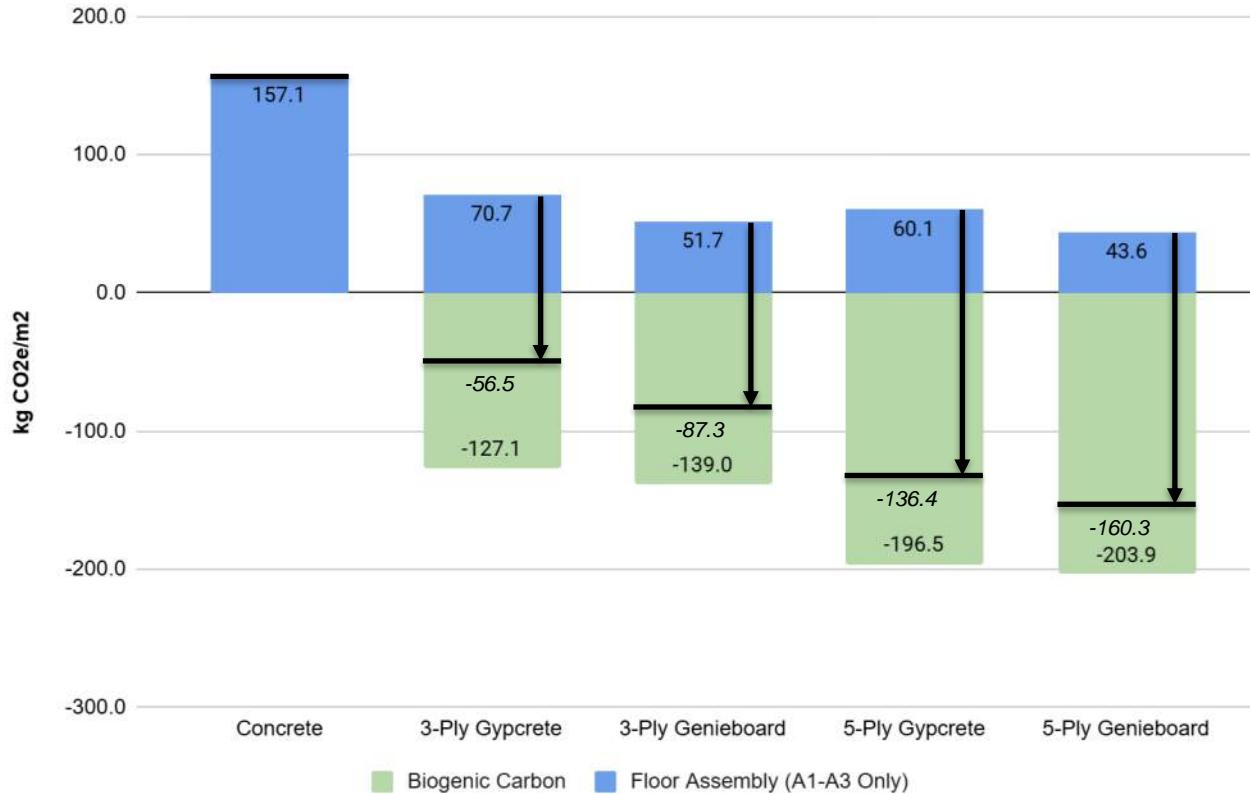
GENIEMAT RST02
2" GYPCRETE
GENIEMAT FF10
5-PLY CLT

**5-PLY
GENIEBOARD:**
8 3/4"
THICKNESS

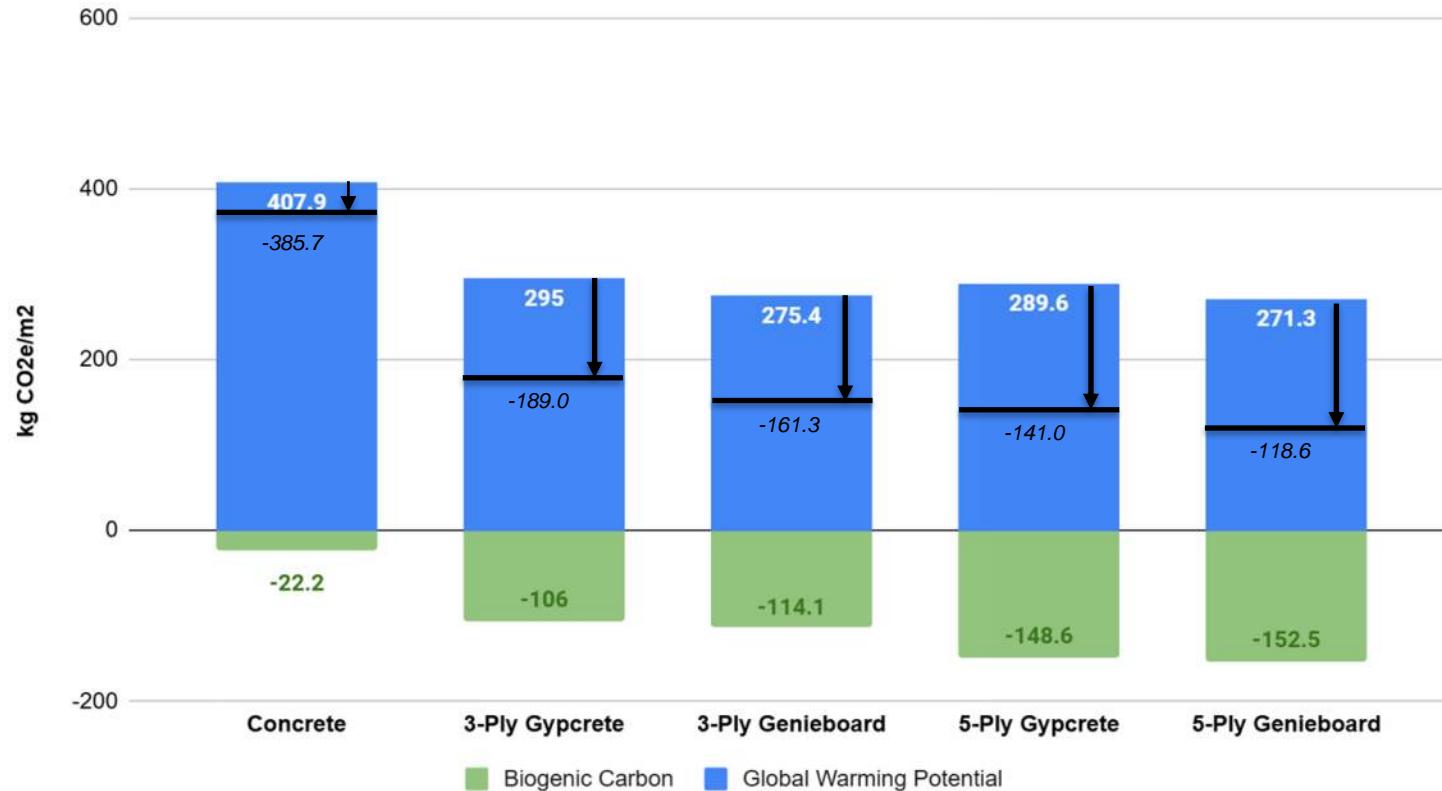
GENIEMAT RST05
GENIEBOARD 302
GENIEMAT FF17
5-PLY CLT

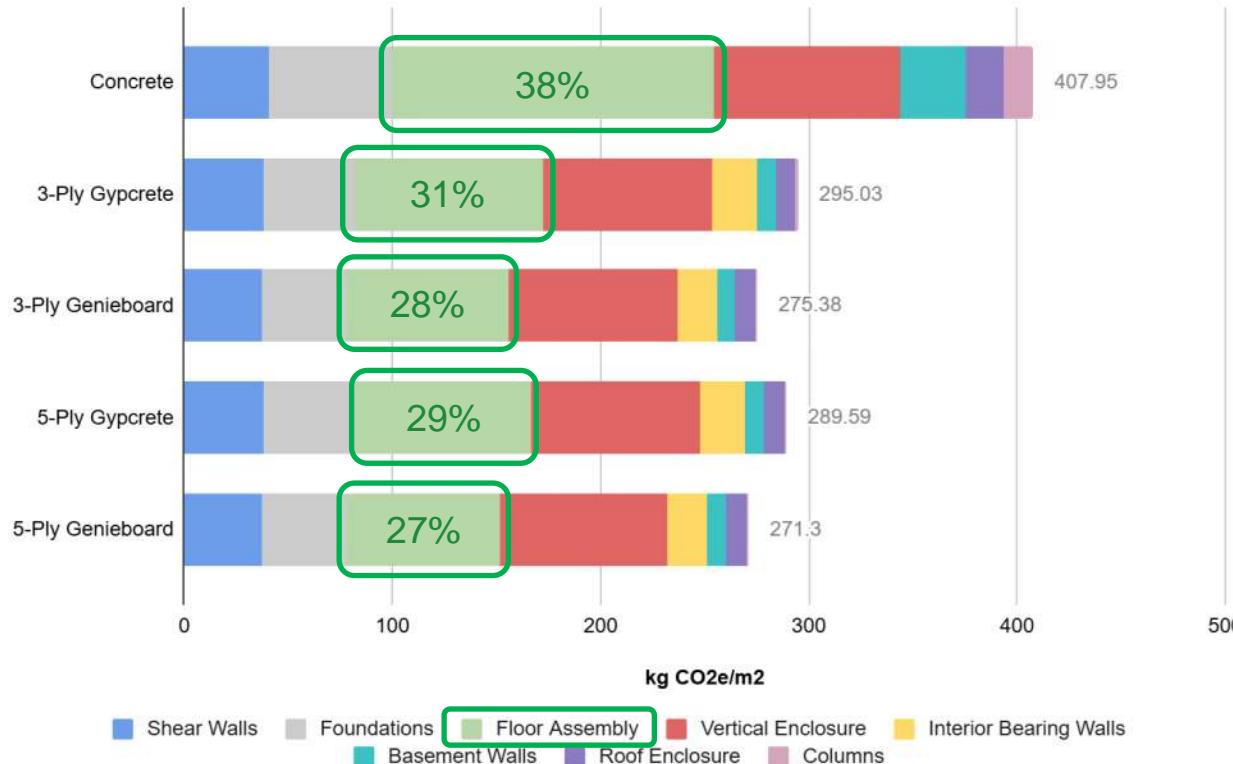
FLOOR ASSEMBLY TAKEAWAYS

- Genieboard reduced the floor assembly weights by **10 psf**, culminating in a **16% reduction** in CFS wall mass and **10% reduction** concrete slab and foundations.
- An added layer of acoustic mat was required, but Genieboard contains recycled material and has low GWP intensity.
- Material saved: 58 cubic yard of concrete, 31.2 tons rebar, 13.2 tons cold-formed steel

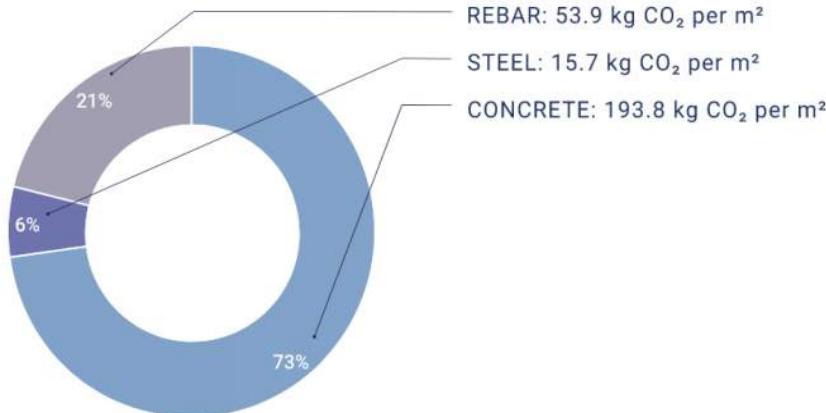


FLOOR ASSEMBLY TAKEAWAYS

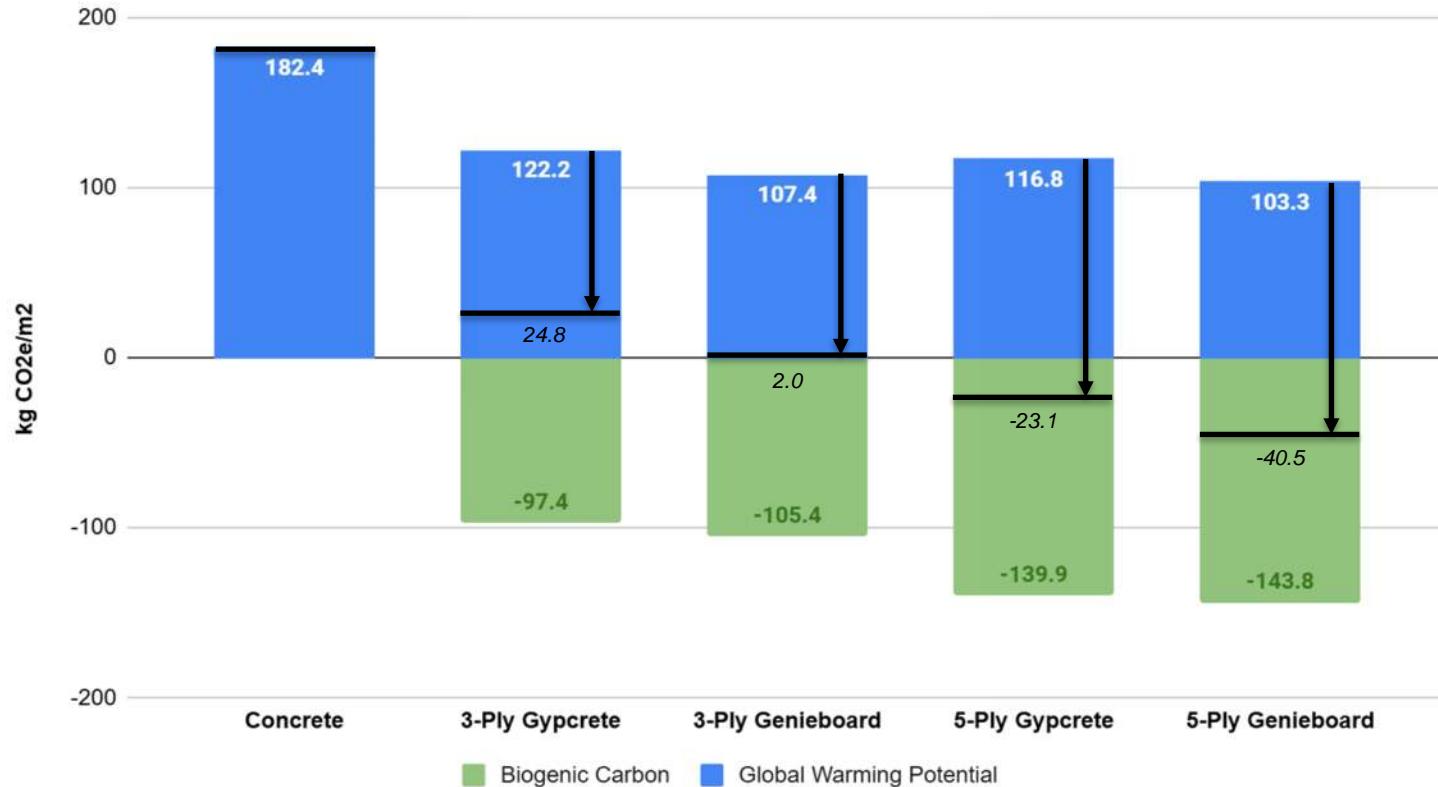

- 5-ply CLT performance reduced the thickness of gypcrete and acoustic mat required, kept similar overall weight, but reduced GWP and increased biogenic carbon.
- The product has great acoustic and fire performance which helped maintain NYC 1+1 fire rating requirements.


Floor Assembly Global Warming Potential Comparison

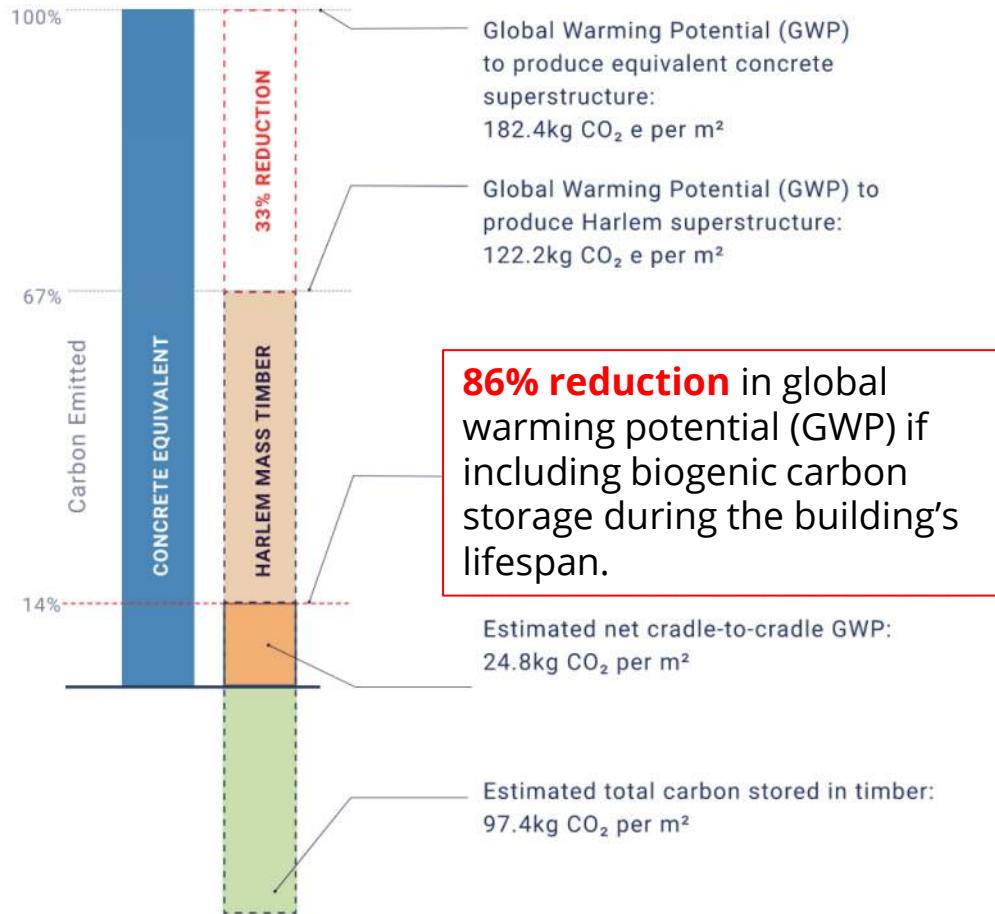
Structure & Enclosure Global Warming Potential Comparison


Structure & Enclosure Omniclass Global Warming Potential Comparison

STRUCTURAL SYSTEM ABOVE PODIUM RESOURCE TYPE COMPARISON


CONCRETE BUILDING

MASS TIMBER BUILDING (3-PLY GYPCRETE)


Structure Above Podium Global Warming Potential Comparison

LCA RESULTS

33% reduction in global warming potential (GWP) from Mass Timber Hybrid design over the Concrete equivalent, for superstructure and enclosure above podium.

28% reduction for whole building, including the podium/basement.

COST COMPARISON RESULTS

CONCRETE BUILDING COST

\$32.4 million

*Repriced by Swinerton to account for inflation and rising construction cost since original design

MASS TIMBER BUILDING COST

\$27.6 million

=\$4.8 Million in Savings

Biggest cost savings due to:

- Reduced foundations
- Prefabrication of CFS wall panels
- Reduced interior finishes for exposed CLT
- Insurance (OCIP vs. General Liability)

2 Additional Units!

OTHER CONSIDERATIONS

Mass Timber sourcing:
study assumed European
supplier, but could be
procured from North
American suppliers shown

CANADA	
1	DowelLam (DLT)
2	Mercer Mass Timber (CLT & Glulam)
3	Kalesnikoff (CLT & Glulam)
4	Element5 (CLT & Glulam)
5	Nordic Structures (CLT & Glulam)

UNITED STATES	
6	KLH (Distribution)
7	DR Johnson Wood Innovations (Glulam)
8	Vaagen Timbers (CLT & Glulam)
9	Mercer Mass Timber (CLT & Glulam)
10	SmartLam (CLT & Glulam)
11	Sterling Structural (CLT)
12	LignaTerra (CLT)
13	Binderholz (CLT & Glulam)
14	Freres (MPP)
15	Boise Cascade (VLT)

CONCLUSION

- NY Mass Timber Studio Program offers a great pathway to **encourage and incentivize** owners and designers to explore **mass timber** and its embodied carbon impacts.
- Biogenic carbon storage is important, but so is **overall reduction of material, performance, occupant health, construction schedule, and cost.**
- **Early and consistent collaboration** across the team is crucial to realize the **full benefits** of mass timber design decisions.

This concludes The American Institute of Architects Continuing Education Systems Course.